

Viruses in Caneberries

July 29-30, 2013 Asheville, North Carolina

Table of Contents

2 Agenda
4Welcome
19Berry viruses: movement and diseases
91Identifying key pathogen vectors in small fruits
124Nematode Vectors of Plant Viruses
141Virus identification and detection
193NCPN Program Update Early Summer FY 2013
208Virus-Host Interactions
249Arthropod vector management strategies in small fruits

An Update on Viruses in Caneberries:

What We Know and Still Need to Learn

County Extension Agent Training Co-Sponsored by the SRSFC and SCRI Grant on Management of Virus Complexes in Rubus

July 29-30, 2013

Asheville, North Carolina

Lodging Hampton Inn and Suites, Asheville-I-26, 18 Rockwood Rd., Fletcher, NC 28732(828-687-0806)

Objectives: Educate agents on how viruses are transmitted in Rubus sp.; how they move; and management practices

July 29, 2013

Basics of virus movements and transmissions-classroom instruction at the MHCREC Assembly Room, Mills River, NC

Moderator: Elena Garcia-University of Arkansas

1:00 p.m.	Welcome - Tom Monaco, Coordinator, SRSFC, NC State University
1:15 p.m.	General Overview of How Viruses Move - Ioannis (Yannis) Tzanetakis, University of Arkansas
2:30 p.m.	Insect Vectors - Hannah Burrack, NC State University and Donn Johnson, University of Arkansas
3:30 p.m.	Break
4:00 p.m.	Nematode Vectors - Terry Kirkpatrick, University of Arkansas
4:30 p.m.	Collecting and Handling Nematode Samples (field activity) - Terry Kirkpatrick, University of Arkansas

July 30, 2013

7:30 a.m. Bus Pickup at Hampton Inn for Field Tour of Blackberry Grower Locations
- Marvin Owings, Henderson County Cooperative Extension and Gina
Fernandez, NC State University

1st Stop 8:30 AM Steve Dalton, Sugar Loaf Mtn.

2nd Stop 9:45 Don Justus (Trucking Don) Edneyville

3rd Stop 11:00 Andy Brownlee, Reiter and Rickie Holness, Driscoll's Edneyville

4th Stop Lunch, 12:30 p.m. Henderson County Cooperative Extension Office

These are approximated times, with approximately one hour stops.

Plant Issues and Virus Management-classroom instruction at Henderson County Cooperative Extension Office Assembly Room

Moderator: Gina Fernandez-NC State University

1:30 p.m.	Recognizing Virus Symptoms – Ioannis (Yannis) Tzanetakis, University of Arkansas
2:00 p.m.	Getting Clean Plant Material – Erich S. Rudyj, APHIS
2:45 p.m.	Break
3:15 p.m.	Plant Responses - Elena Garcia, University of Arkansas
4:00 p.m.	Management Practices - Donn Johnson, University of Arkansas and Hannah Burrack, NC State University
5:00 p.m.	Depart

History

- 1999 Meeting
- MOU 2000 NC State, Clemson, Univ of GA
- 2002 Univ of TN
- 2005 VA Tech
- 2008 Univ of Arkansas
- Six Member Institution
- Annual Budget \$210,000

Objectives

- Pool expertise
- County Agent Training
- Promote Research
- Education
- Web site

Grant Program

- Goal-provide funding for applied research and extension activities
- Competitive
- Seed Grants-maximum of \$5000
- Total amount awarded 2001-2013= \$1.12 million
- Reports posted on SRSFC website
- http://www.smallfruits.org/SRSFCReserchFunding/ index.htm

County Extension Agent Training

- Enhance expertise in small fruit production
- Twenty three trainings since 1999
- A total of 575 agents from the member states have attended
- Scholarships awarded to cover cost of training, 4 per member state
- Events held in the member states

Blueberry Workshop June 2007

Muscadine Workshop 2006

Pruning Workshop 2006 Walterboro, South Carolina

Strawberry Training 2008 Charlotte, North Carolina

Blackberry Training 2009 Lincolnton, North Carolina

SRSFC Web Site

www.smallfruits.org
Web Master Brenda Willis UGA

- Hits per day 4,000
- Contents

SFN-published quarterly

IPM/Production Guides

Crops

County Agent Trainings

Research and Ext Grants

Other Activities

- Sponsorships of small fruit meetings/conferences
- Travel grants for county agents
- Support of state extension meetings
- Recruiting membership
- Partnering in Specialty Crops Grants
- Grant writing
- Publication sponsorships

USDA NIFA Award to SRSFC

- The SRSFC received the 2012 NIFA Partnership Award in Multi State efforts. Only one of these presented per year in the US
- Citation-"For successful regionalization focusing on improving the knowledge base and service to small fruit growers in the southern region of the United States"

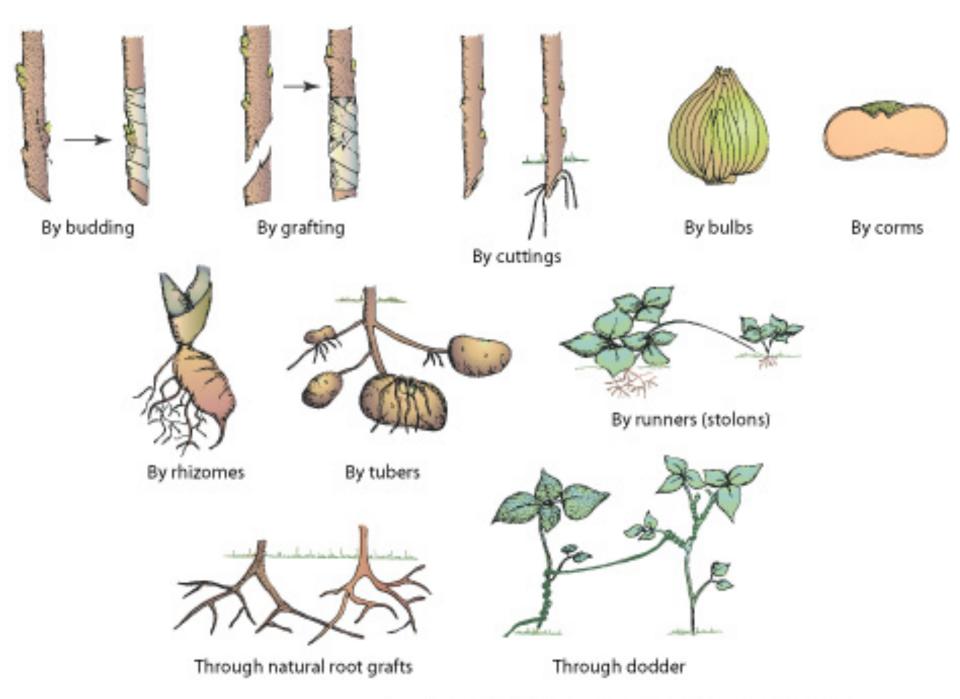
July 29-30, 2013 Training

- Reimbursement questions?
- Evaluations

- Other Questions?
- Participant Introductions

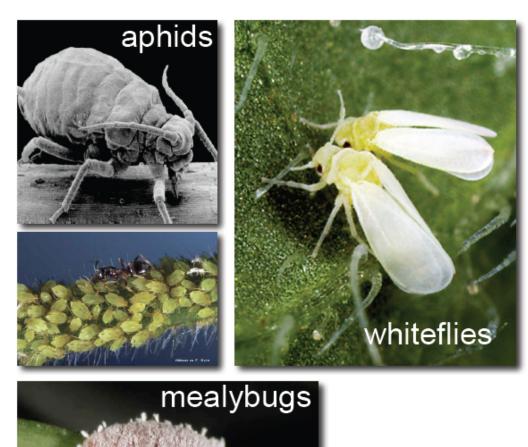
July 29-30, 2013 Training

 Organizers-Elena Garcia, Ioannis(Yannis) Tzanetakis, Tom Monaco


Sponsors

SRSFC

SCRI Specialty Crop Grant-UAR



Copyright © 2005 Elsevier Inc. All rights reserved.

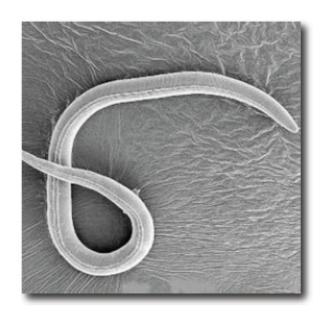
Copyright © 2005 Elsevier Inc. All rights reserved.

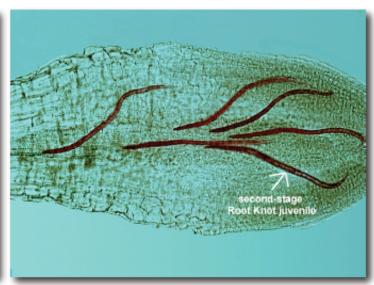
Phylum Arthropoda, Class Insecta, Order Hemiptera

Phylum Arthropoda, Class Insecta

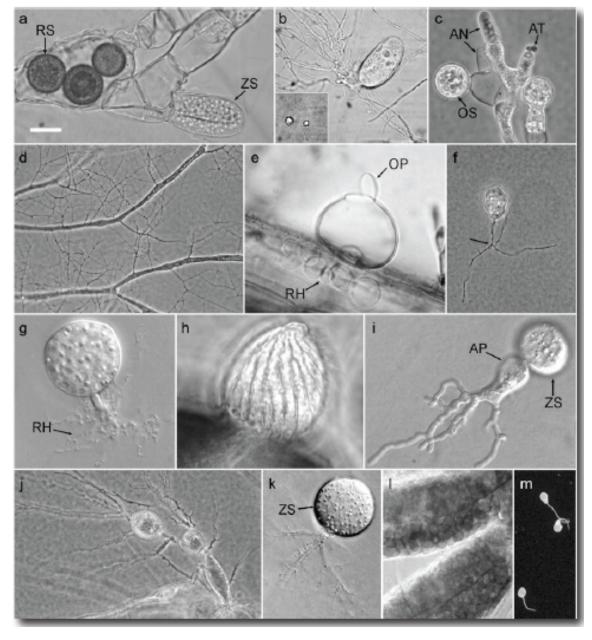
Order Thysanoptera

Phylum Arthropoda, Class Arachnida, Order Acariformes



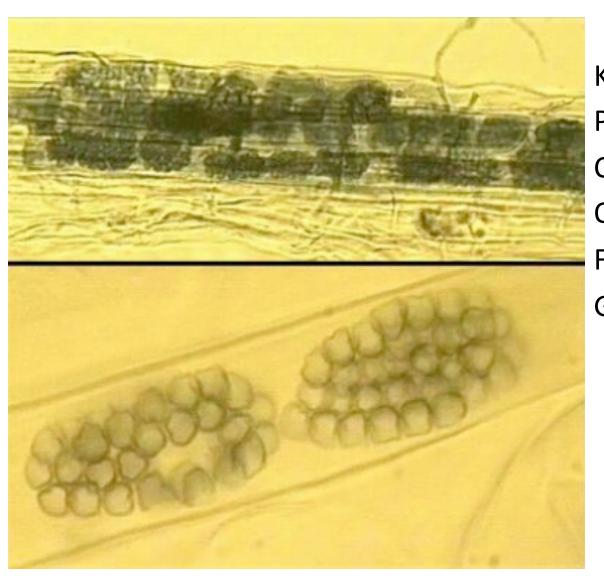


mites


Phylum Nematoda, Class Secernentea, Order Tylenchida

Nematodes

Kingdom: Fungi


Phylum: *Chytridiomycota*

Class: *Chytridiomycetes*

Order: *Incertae sedis*

Family: Olpidiaceae

Genus: Olpidium

Kingdom: Rhizaria

Phylum: Cercozoa

Class: Plasmodiophorea

Order: Plasmodiophorida

Family: Plasmodiophoridae

Genus: Polymyxa

Vectors and plant viruses they transmit

		Virus groups					
Vector taxa	Vector group	Icosahedral particles RNA genome	Rod-shaped particles RNA genome	DNA genome	Enveloped particles RNA genome	Total	%
Hemiptera	Aphids	26	153 ^a	13	5	197	28
	Whiteflies	_	13	115 ^b	-	128	18
	Leafhoppers	8	-	15	3	26	4
	Planthoppers	10	4 ^c	-	4	18	3
	Other hemiptera	-	8	5	-	13	2
Thysanoptera	Thrips	2	_	-	14	16	2
Coleoptera	Beetles	50	1	_	-	51	7
Acari	Mites	10	9	-	-	10	1
Nematoda	Nematodes	45	3	-	_	48	7
Mycota	Fungi	8	16	-	_	24	3
	No identified vectors	84	60	19	3 ^d	166	24
	Total	233	268	167	30	697	Г
	%	33	39	24			

^aIncludes 110 virus species of the genus *Potyvirus*, family *Potyviridae*;

bVirus species of the genus Begomovirus, family Geminiviridae;

^cThese are all tenuiviruses that have multiple shapes;

^dThese viruses probably have insect vectors.

Four modes of virus transmission

Biological characteristic	Nonpersistent stylet-borne	Semipersistent foregut-borne ^b	Persistent circulative	Persistent propagative
AAP and IAPa	Seconds, minutes ^c	Minutes, hours ^d	Hours, days ^d	Hours, days ^d
Latent period	None	None	Hours, days	Days, weeks
Retention time in vector	Minutes, lost after molting	Hours, lost after molting		Lifespan of insect
Presence in vector's hemolymph	No	No	Yes	Yes
Multiplication in vector	No	No	No ^e	Yes
Transovarial transmission	No	No	No	Often

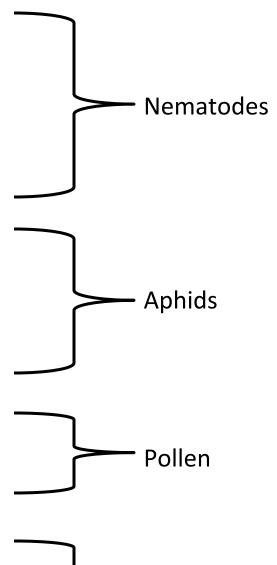
^aAAP, Acquisition access period; IAP, Inoculation access period;

^bA recent publication revealed that the semi-persistent virus Cauliflower mosaic virus (CaMV) is retained in the stylet (178);

^cThe time period during which virus can be acquired from and inoculated into plant epidermal cells;

dAAP and IAP times depend on the location of the virus in the plant, i.e., acquisition of the virus from the plant phloem takes longer than acquisition from the epidermis or mesophyll cells;

Except for TYLCV for which there is evidence that it replicates in its whitefly vector.


Strawberry viruses circa 2003

Arabis mosaic – Europe Tomato ringspot Raspberry ringspot – Europe Strawberry latent ringspot-Europe Tomato black ring –Europe

Strawberry crinkle
Strawberry mild yellow edge
Strawberry mottle
Strawberry vein banding

Fragaria chiloensis latent – Chile Tobacco streak*

Strawberry pallidosis Beet pseudo-yellows

The whitefly viruses

Table 2. Transmission frequency of Strawberry pallidosis-associated virus (SPaV) and *Beet* pseudo yellows virus (BPYV) with the greenhouse whitefly (*Trialeurodes vaporariorum*)

	Plant species		
Virus	Fragaria × ananassa	Nicotiana benthamiana	
BPYV SPaV	8/21 (38%) 3/21 (14%)	16/20 (80%) 3/20 (15%)	

Table 3. Host range of Strawberry pallidosisassociated virus (SPaV) utilizing *Trialeurodes* vaporariorum for transmission

Plant species tested	Infected/ inoculated
Fragaria × ananassa	3/10
Sibbaldia procumbens	3/8
Duchesnea indica	0/3
Nicotiana benthamiana	6/10
N. glutinosa	0/5
N. clevelandii	2/5
N. tabacum	0/5
Physalis wrightii	5/6
P. floridana	0/5
Malva parviflora	2/5
Citrullus spp.	0/5
Chenopodium murale	0/5
C. capitatum	0/5
C. amaranticolor	0/5
Gomphrena globosa	0/5
Capsella bursa-pastoris	0/5
Brassica oleracea var. italica	0/5
Lycopersicon esculentum	0/5
Beta vulgaris	0/5
B. maritima subsp. macrocarpa	0/5
Datura stramonium	0/5
Urtica urensa	0/5

^a SPaV has also been found in field isolates of nettle (*Urtica* sp.) associated with high field populations of greenhouse whitefly. It is not known if field isolates were *U. urens* or another *Urtica* species.

BPYV-SPaV double infections

Other strawberry viruses?

Revisited strawberry virus-like diseases.

Chlorotic fleck

Leafroll

Goal: Identify unknown viruses that may contribute to the decline.

Identification, characterization and development of detection techniques for strawberry viruses

Virus name	Acronym	Mode of transmission	Genus	Laboratory detection ^b
* Apple mosaic	ApMV	Pollen, seed	Ilarvirus	ELISA, RT-PCR
Arabis mosaic	ArMV	Nematode, seed	Nepovirus	ELISA, RT-PCR
* Beet pseudo-yellows	BPYV	Whitefly	Crinivirus	RT-PCR
* Fragaria chiloensis cryptic	FCICV	Unknown	Unknown	RT-PCR
* Fragaria chiloensis latent	FC1LV	Pollen, seed	Ilarvirus	ELISA, RT-PCR
Raspberry ringspot	RpRSV	Nematode, seed	Nepovirus	ELISA, RT-PCR
* Strawberry chlorotic fleck	StCFV	Aphid	Closterovirus	RT-PCR
Strawberry crinkle	SCV	Aphid	Cytorhabdovirus	RT-PCR
Strawberry feather leaf	NA	Unknown	Unknown	NA
* Strawberry latent	StLV	Unknown	Cripavirus	RT-PCR
Strawberry latent C	SLCV	Aphid	Nucleorhabdovirus	NA
* Strawberry latent ringspot	SLRSV	Nematode, seed	Sadwavirus	ELISA, RT-PCR
Strawberry mild yellow edge	SMYEV	Aphid	Potexvirus	ELISA, RT-PCR
Strawberry mottle	SMoV	Aphid	Sadwavirus	RT-PCR
* Strawberry necrotic shock	SNSV	Thrips, pollen, seed	Ilarvirus	ELISA, RT-PCR
* Strawberry pallidosis associated	SPaV	Whitefly	Crinivirus	RT-PCR
Strawberry pseudo mild yellow edge	SPMYEV	Aphid	Carlavirus	ELISA
Strawberry vein banding	SVBV	Aphid	Caulimovirus	PCR
Tobacco necrosis	TNV	Oomycete	Necrovirus	ELISA, RT-PCR
Tomato black ring	TBRV	Nematode, seed	Nepovirus	ELISA, RT-PCR
Tomato ringspot	ToRSV	Nematode, seed	Nepovirus	ELISA, RT-PCR

Tobacco streak virus

- * Strawberry crinivirus 3
- * Strawberry crinivirus 4

Vector control

Blackberry yellow vein disease

First observed in 2000 in the Carolinas.

Tested for known viruses (RBDV, TRSV etc) – Several viruses were found but none consistently associated with symptoms.

Tobacco ringspot virus and BYVD

BYVD is very similar to what people thought as being TRSV symptoms

TRSV textbook symptoms

Single TRSV-infection

Are symptoms cv. dependent? The **majority** of plants infected with TRSV are symptomless

New viruses in Rubus in the last decade

16 viruses & virus-like agents were known to infect *Rubus* before we started looking into *Rubus* complexes – We now have over 45...

New Rubus viruses

Blackberry yellow vein associated virus

Blackberry virus E

Blackberry virus X

Blackberry virus Y

Blackberry virus Z

Beet pseudo yellows virus

Blackberry yellow mottle virus

Blackberry chlorotic ringspot virus

Strawberry necrotic shock virus

Black raspberry necrosis virus

Raspberry leaf mottle virus

Rubus canadensis virus -1

Impatiens necrotic spot virus

Raspberry latent virus

etc.....

New viruses in Rubus in the last decade

16 viruses & virus-like agents were known to infect *Rubus* before we started looking into *Rubus* complexes – We now have over 45...

New Rubus viruses

Blackberry yellow vein associated virus

Blackberry virus E

Blackberry virus X

Blackberry virus Y

Blackberry virus Z

Beet pseudo yellows virus

Blackberry yellow mottle virus

Blackberry chlorotic ringspot virus

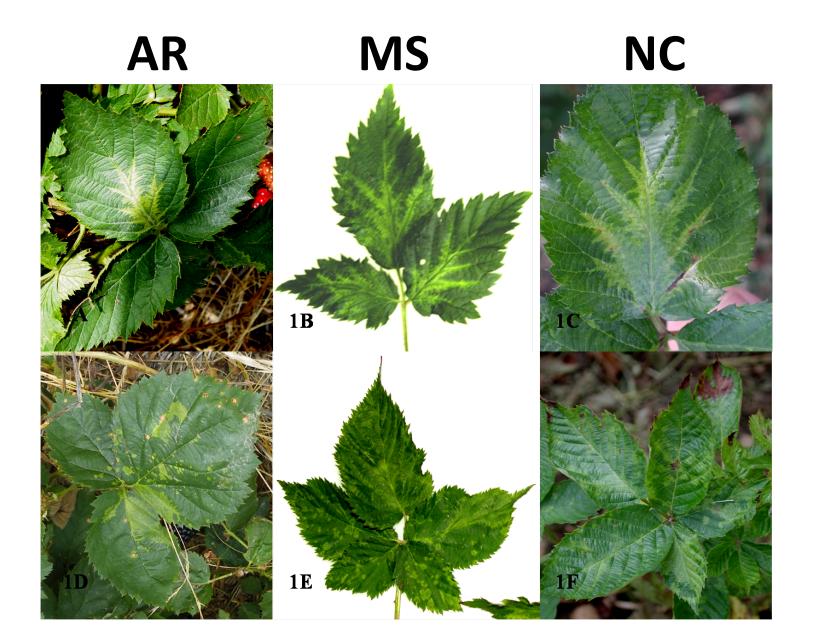
Strawberry necrotic shock virus

Black raspberry necrosis virus

Raspberry leaf mottle virus

Rubus canadensis virus -1

Impatiens necrotic spot virus


Raspberry latent virus

etc.....

Tests are available for all the new viruses

Same disease-different viruses

Arkansas

BYVaV BVY TRSV

Carolinas BYVaV

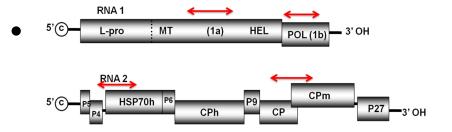
BVX

Mississippi

BYVaV

TRSV

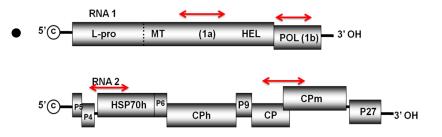
BVE

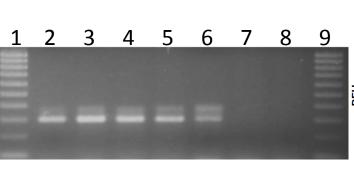

How do we tackle BYVD?

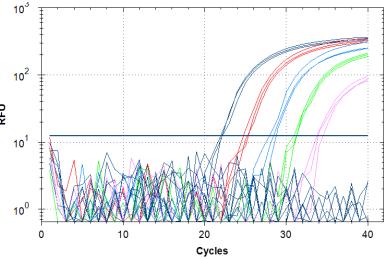
After identification of all (or almost all) viruses that are involved in the disease we need to:

- A. Make sure that mother plants are being tested for the new viruses before they are propagated.
- B. Identify virus combinations that can cause BYVD.
- C. Identify virus vectors.
- D. Find alternative hosts of the viruses in the field.
- E. Minimize or eliminate BYVD by eliminating the weakest link, the virus vector(s) that is the easiest to control.

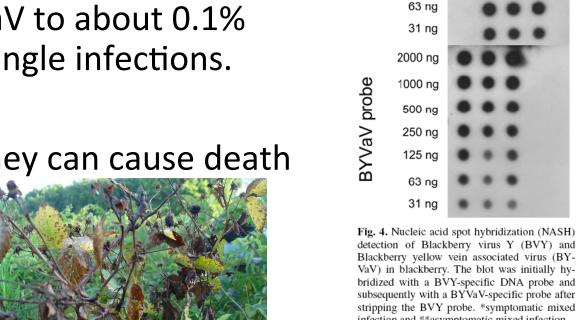
What are the viruses present in your area? The importance of detection


 BYVaV - Multistate sample collection - 35 isolates


What are the viruses present in your area? The importance of detection


 BYVaV - Multistate sample collection - 35 isolates

Detection 100% identity


Virus interactions: The BYVaV/BVY story

BVY did not cause symptoms in single infections but together with BYVaV they cause BYVD.

In mixed infections, BVY knocks down concentration of BYVaV to about 0.1% compared to titer in single infections.

In mixed infections, they can cause death

of fruiting canes.

infection and **asymptomatic mixed infection.

2000 na

1000 ng 500 ng 250 ng

125 na

Transmission

Experiment	Trialeurodes abutilonea	Trialeurodes vaporariorum	
Experiment 1	4/7	3/9	
Experiment 2	5/8	1/8	
Experiment 3	3/10	3/10	
Total	12/25	7/27	

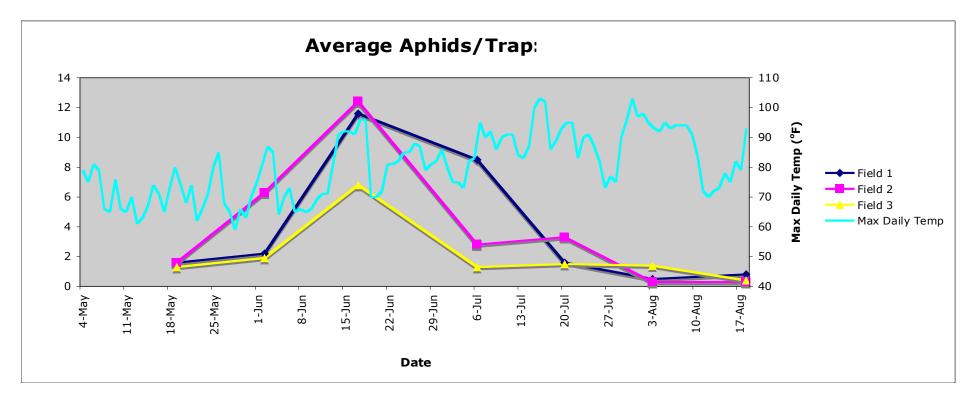
Greenhouse whitefly

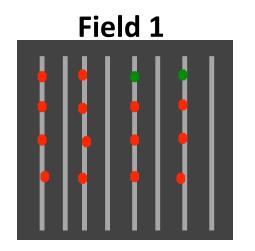
Both whitefly species transmitted the virus at a rate >30%

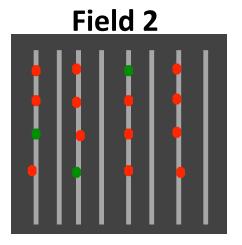
Alternate hosts

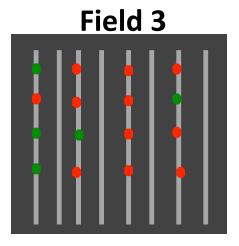

Plant species	Scientific name	Family	Number of plants tested
Garden vetch	Vicia sativa	Fabaceae	16
Virginia creeper	Parthenocissus quinquefolia	Vitaceae	16
Red clover	Trifolium pretense	Fabaceae	16
Wild garlic	Allium vineale	Amaryllidaceae	16
Creeping woodsorrel	Oxalis corniculata	Oxalidaceae	16
Carolina geranium	Geranium carolinianum	Geraniaceae	16
Curly dock	Rumex crispus	Polygonaceae	16
Dandelion	Taraxacum officinale	Asteraceae	16
Tall fescue	Festuca arundinacea	Poaceae	16
Wild wheat	Avena fatua	Poaceae	16
Grapes	Vitis vinifera	Vitaceae	16
Peach	Prunus persica	Rosaceae	16
Blueberry	Vaccinium spp.	Ericaceae	16
Shepherd's purse	Capsella bursa-pastoris	Brassicaceae	16
Nutsedge	Cyperus spp.	Cyperaceae	16
Horsenettle	Solanum carolinense	Solanaceae	16
Common ragweed	Ambrosia artemisiifolia	Asteraceae	16
Tree of heaven	Ailanthus altissima	Simaroubaceae	16
Apple	<i>Malus</i> spp.	Rosaceae	200
Rose	Rosa multiflora	Rosaceae	40
Carpetweed	Mollugo verticillata	Molluginaceae	16
Amaranthus	Amaranthus spp.	Amaranthaceae	16
Poor joe	Diodia teres	Rubiaceae	16
Ground cherry	Physalis spp.	Solanaceae	16
Sorghum	Sorghum spp.	Poaceae	16

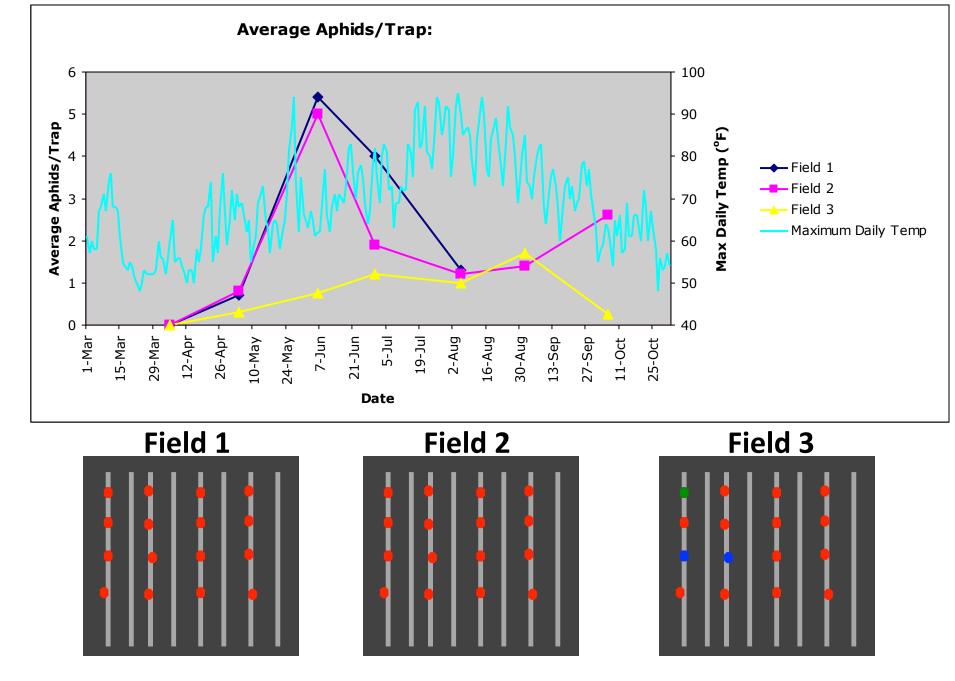
Vector elimination The BRNV paradigm

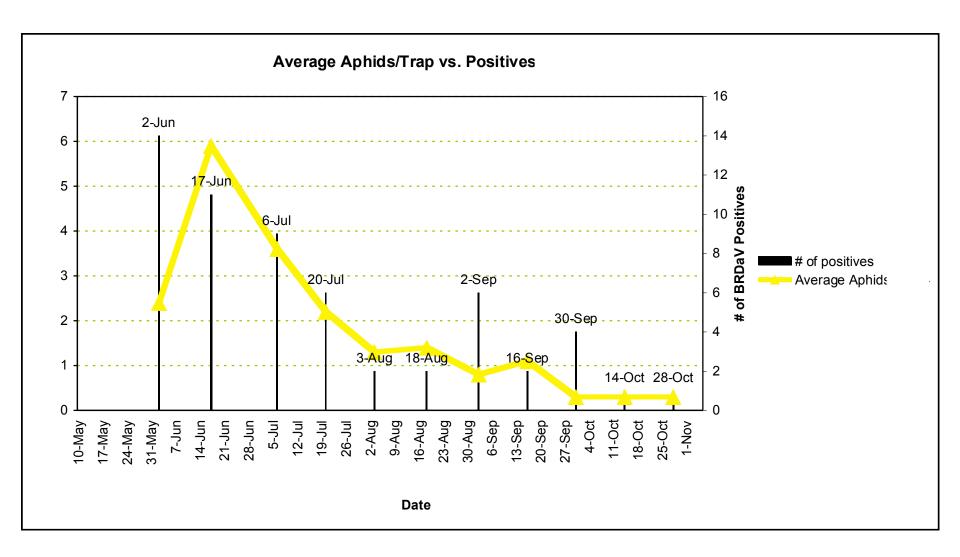

New field monitoring
Permanent tagged plants


Time of transmission
High incidence of virus
Potted plants


Rotated every month

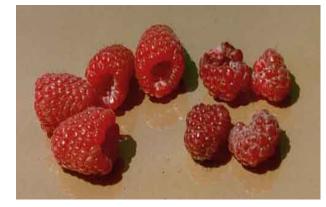






Nearly 100% transmission in three years!

Time of Transmission



Raspberry crumbly fruit and decline

The Pacific Northwest (PNW) is a primary producer of red raspberries

Raspberry crumbly fruit and decline

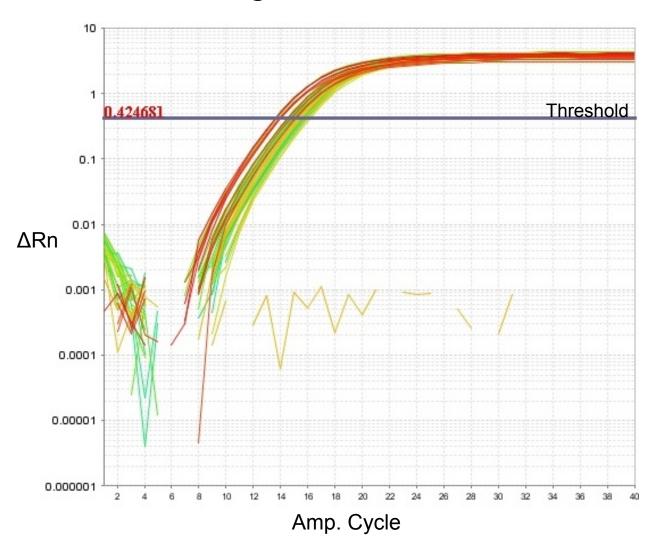
- 'Several cultivars are susceptible to crumbly fruit disease (drupelets abortion)
- Raspberry bushy dwarf virus (RBDV), a pollen-borne idaeovirus was considered the causal agent of crumbly fruit

Still, in many cases RBDV single infections did not cause symptoms

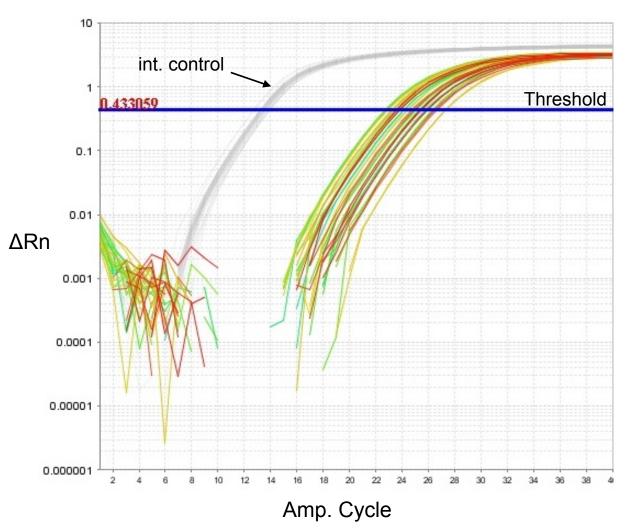
Another virus complex?

Important observations suggested that crumbly fruit symptoms may be increased by additional viruses:

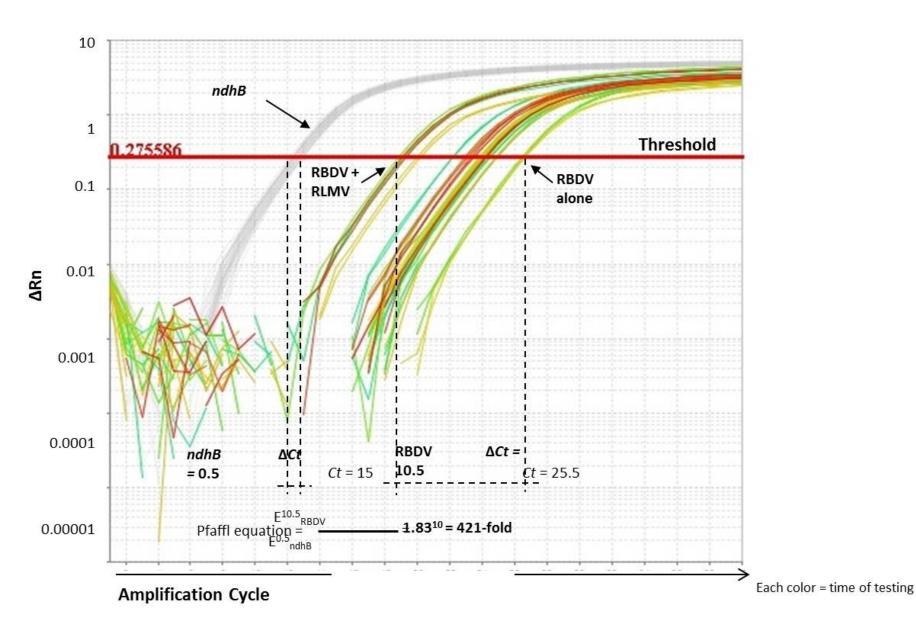
1. The disorder is more severe in cool areas with high populations of the large raspberry aphid *Amphorophora agathonica*


Two additional viruses found in severely affected fields,
 Raspberry leaf mottle (RLMV) and Raspberry latent (RpLV)

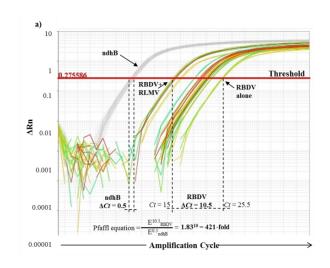
RBDV, RLMV and RpLV interactions


RLMV qRT-PCR

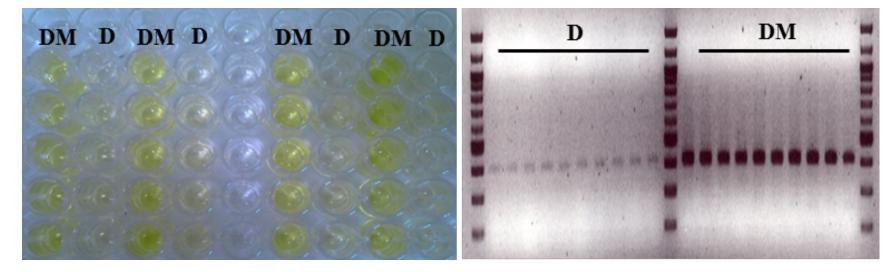
RLMV titer in single and mixed infections over time



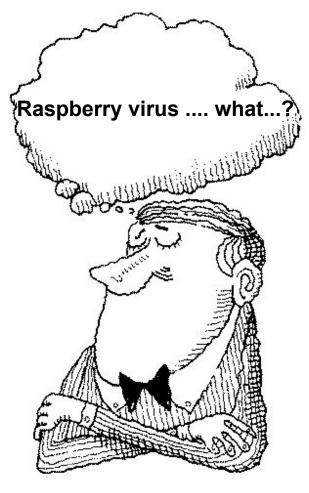
RpLV qRT-PCR


RpLV titer in single and mixed infections over time

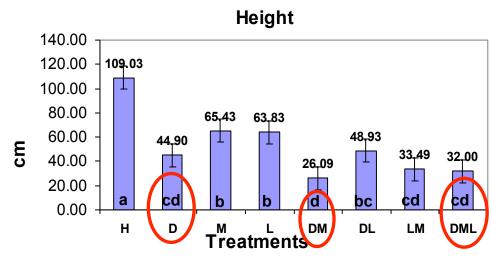
RBDV titer enhanced in co-infections with RLMV



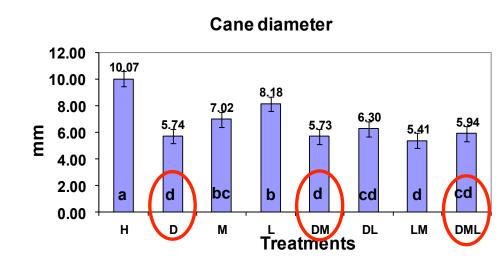
RBDV titer enhanced in co-infections with RLMV


RBDV titer increase verified by conventional methods

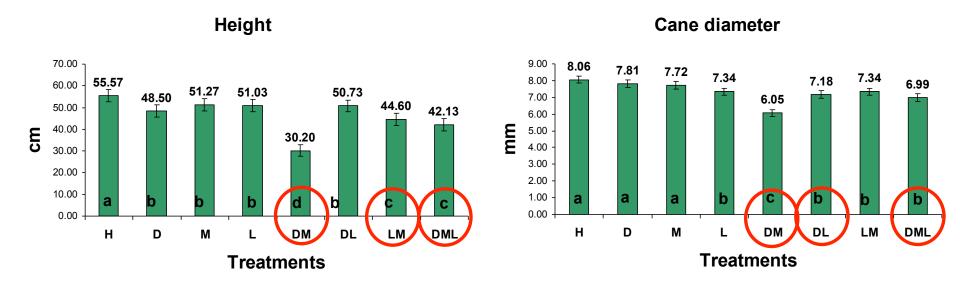
ELISA RT-PCR (20 cycles)

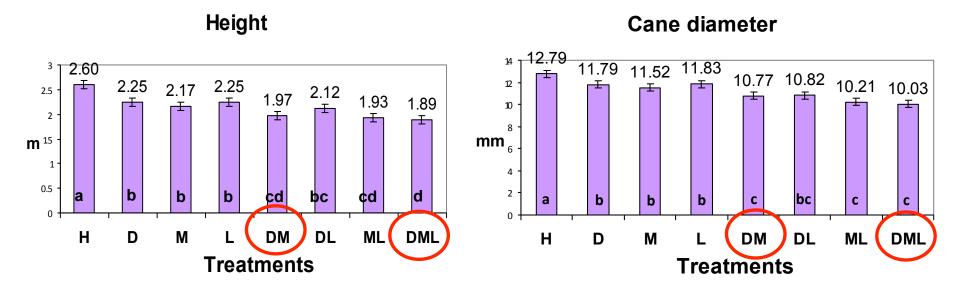

Mixed virus infections affect on plant growth and fruit crumbliness

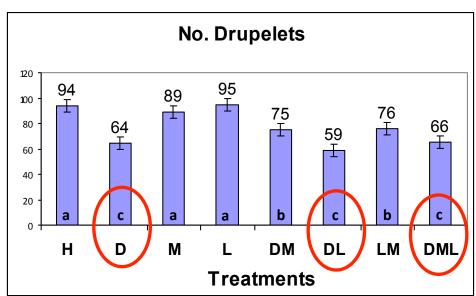
- H Control
- D RBDV Dwarf
- M RLMV Mottle
- L RpLV Latent
- DM RBDV + RLMV
- DL RBDV + RpLV
- ML RLMV + RpLV
- DML RBDV + RLMV + RpL\

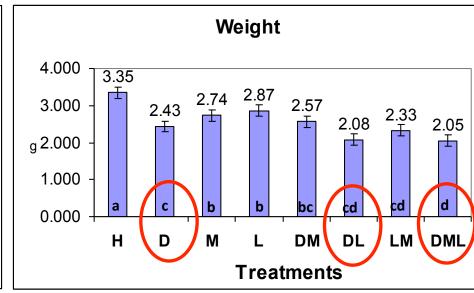


Plant Growth Establishment (2010)




Plant Growth (2011)




Plant Growth (2011)

Crumbly Fruit

Crumbly fruit

Virus Incidence in 'Meeker' Fields

Northern Washington			
Field Age	RLMV	RpLV	
(years)	(%)	(%)	
1	4	0	
1	30	0	
1	10	0	
2	58	21	
2 2 2 2 2 2 3 3 3	0		
2	0	0	
2	6	0	
2	16	0	
3	31	6	
3	6	0	
3	13	0	
3	50	0	
4	19	6	
4	13	0	
5	69	0	
5 5 5	90	80	
5	100	75	
5	44	6	
5	100	17	
6	70	25	
6	100	6	
6	100	12	
7	100	6	
8	100	46	

Southern Washington/ Oregon			
Field Age (years)	RLMV (%)	RpLV (%)	
1	0	0	
5	40	20	
6	0	20	
7	8	17	
8	19	0	
8	27	0	

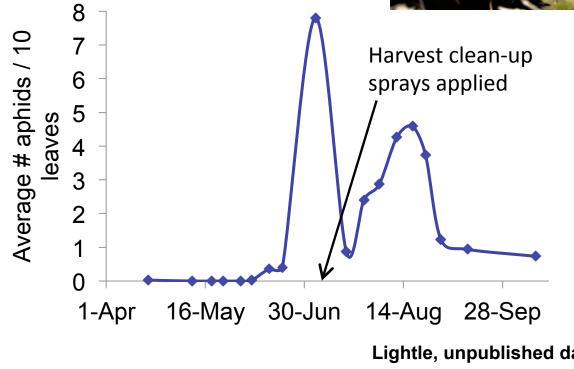
Crumbly Fruit Scouting

Crumbly fruit and virus incidence in Washington

Field Age	Crumbliness 0: normal 3: severe	Virus incidence %		
	0 1 2 3	RBDV	RLMV	RpLV
4	1	44	25	0
4	2	100	100	0
4	3	93	100	7
5	3	100	100	40
6	3	92	96	40

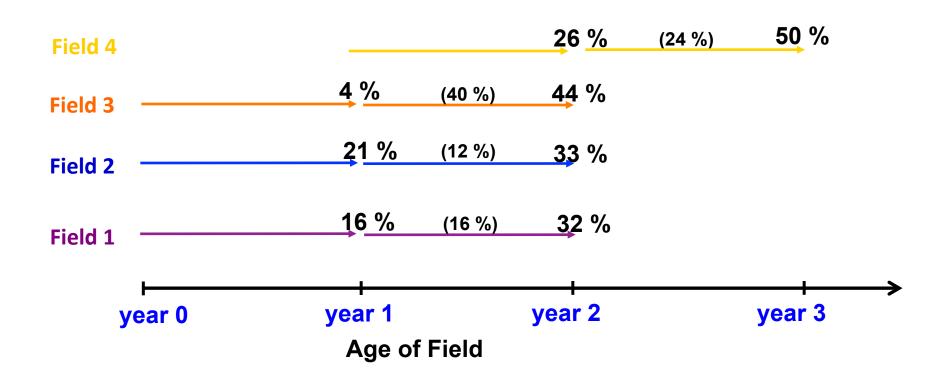
Insects in Traps (2011)

Empoasca fabae was sporadic



Few numbers of Macropsis fuscula

Raspberry aphid A. agathonica predominant insect



Lightle, unpublished data

RLMV spread in the field

Four fields being monitored for virus spread

Control Strategies

1. Think long term, identify potential risks of a site

2. Start with clean plants

3. Identify and diagnose problems early

4. Implement control strategies ASAP

5. If a virus complex is involved - identify viruses present and which are the easiest to control

The importance of clean plants

• Better establishment

The importance of clean plants

Better establishment

Longer life of plantings

The importance of clean plants

Better establishment

Longer life of plantings

 Fewer disease problems/Reduce risk of introducing new viruses to a region or field

The story:

Propagation from an existing plot

10 ton/acre =\$30,000/year

Latent infections with Blueberry scorch

The result?

Removal of infected material Cumulative loss: ~ 100,000/acre

The berry virus consortium:

16 individuals from UA, NCSU, USDA-ARS, MSU, UGA

Bindu Poudel, Diego Quito, Danielle Lightle, Anne Halgren, James Susaimuthu

Identifying key pathogen vectors in small fruits

Hannah Burrack, NC State University and Donn Johnson, University of Arkansas

What is a vector?

An organism that spreads pathogens

What arthropod groups vector plant pathogens in small fruits?

- Whiteflies
- Aphids
- Leafhoppers
- Mites
- Psyllids
- Mealybugs
- •Thrips

What arthropod groups vector plant pathogens in small fruits?

- Whiteflies
- Aphi
 Leaf

 What do these groups
- have in common? • Mite
- Psyllids
- Mealybugs
- Thrips

How do arthropods vector plant viruses?

Virus taxon(s)	Main vector group	Virus taxon(s)	Main vector group
Noncirculative, nonpersistent		Circulative, nonpropagative	
Caulimovirus, Fabavirus, Potyvirus, Carlavirus, Cucumovirus, Alfamovirus	Aphids	Enamovirus, Luteovirus, Nanavirus, Umbravirus	Aphids
Macluravirus	Thrips, Beetles	Geminivirus	Whiteflies, treehoppers, leafhoppers
Potexvirus	Aphids, mites, also some mechanical	Bromovirus, Carmovirus, Comovirus, Sobemovirus, Tymovirus	Beetles
Noncirculatative, semipersistant		Rymovirus	Mites
Badnavirus	Mealybugs, leafhoppers	Circulative, propagative	
Closterovirus	Aphids, whiteflies, mealybugs	Tosopovirus	Thrips
Sequivirus	Aphids	Marafivirus, Phytoveovirus	Leafhoppers
Trichovirus	Aphids, mealybugs, mites	Fijivirus, Oryzavirus, Tenuivirus	Planthoppers
Waikavirus	Aphids, leafhoppers	Phytorhabdovirus, Nucleorhabdovirus	Aphids, leafhoppers, planthoppers
		Cytorhabdovirus	Aphids, planthoppers

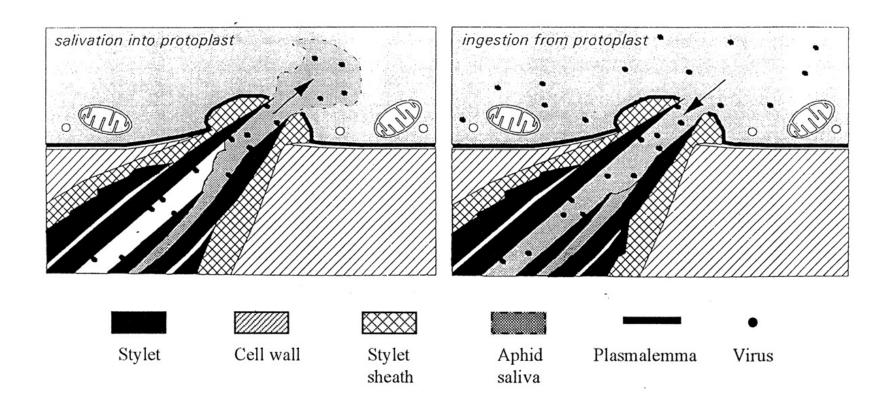
Adapted from

Gray S M, and Banerjee N Microbiol. Mol. Biol. Rev. 1999; 63:128-148

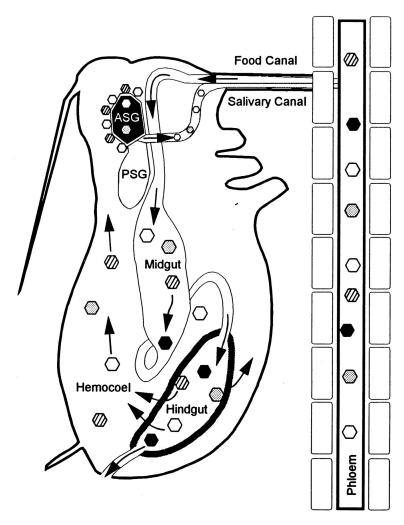
How do arthropods vector plant viruses?

Virus taxon(s)	Main vector group	Virus taxon(s)	Main vector group
Noncirculative, nonpersistent		Circulative, nonpropagative	
Caulimovirus, Fabavirus, Potyvirus, Carlavirus, Cucumovirus, Alfamovirus	Aphids	Enamovirus, Luteovirus, Nanavirus, Umbravirus	Aphids
Macluravirus	Thrips, Beetles	Geminivirus	Whiteflies, treehoppers, leafhoppers
Potexvirus	Aphids, mites, also some mechanical	Bromovirus, Carmovirus, Comovirus, Sobemovirus, Tymovirus	Beetles
Noncirculatative, semipersistant		Rymovirus	Mites
Badnavirus	Mealybugs, leafhoppers	Circulative, propagative	
Closterovirus	Aphids, whiteflies, mealybugs	Tosopovirus	Thrips
Sequivirus	Aphids	Marafivirus, Phytoveovirus	Leafhoppers
Trichovirus	Aphids, mealybugs, mites	Fijivirus, Oryzavirus, Tenuivirus	Planthoppers
Waikavirus	Aphids, leafhoppers	Phytorhabdovirus, Nucleorhabdovirus	Aphids, leafhoppers, planthoppers
		Cytorhabdovirus	Aphids, planthoppers

Adapted from


Gray S M, and Banerjee N Microbiol. Mol. Biol. Rev. 1999; 63:128-148

How do arthropods vector plant viruses?


- Circulative
 Moves systemically within arthropod's body
- Propagative
 Replicates within arthropod body

Model of the ingestion-salivation mechanism of noncirculative, nonpersistent transmission

Gray S M, and Banerjee N Microbiol. Mol. Biol. Rev. 1999; 63:128-148

Circulative route of barley yellow dwarf luteoviruses (BYDVs) through aphids

Gray S M, and Banerjee N Microbiol. Mol. Biol. Rev. 1999; 63:128-148

Microbiology and Molecular Biology Reviews

Nonpersistent transmission

- Acquisition time
 Seconds
- Inoculation timeSeconds
- Latent period (time from acquisition to ability to transmit)
 Zero
- Retention time (time after acquisition a vector remains capable of transmission)
 - Minutes to hours

Persistent transmission

- Acquisition time
 Minutes
- Inoculation time

Minutes

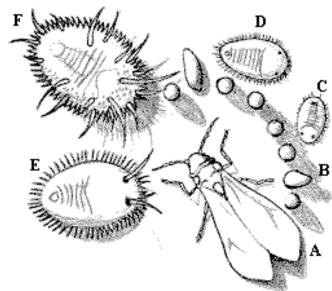
Longer feeding positively related to acquisition and inoculation

- Latent period (time from acquisition to ability to transmit)
 1 or more days
- Retention time (time after acquisition a vector remains capable of transmission)

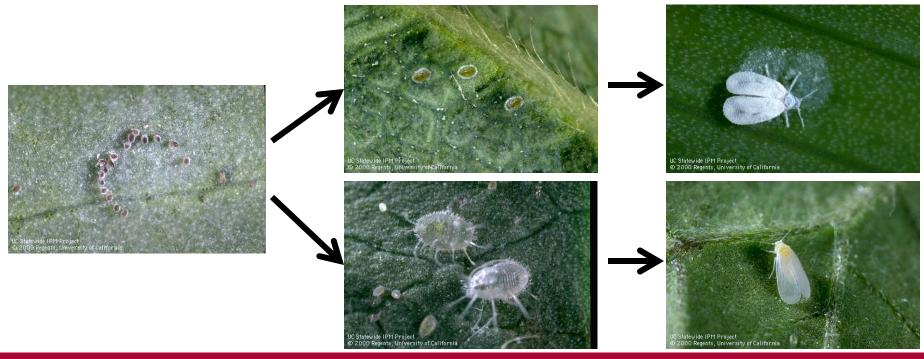
Through molt or life of insect

Biology of arthropod vectors in small fruits

- Whiteflies
- Aphids
- Leafhoppers
- Mites
- Psyllids
- Mealybugs
- Thrips



Whitefly biology


- Can be found on strawberries, blueberries, and caneberries in the southeast
- Known vectors of strawberry viruses

Greenhouse whitefly. A, Adult. B, Eggs. C-E, Nymphs. F, Pupa.

Whitefly biology

- Microscopic eggs laid on undersides of leaves
- Fourth instar larvae ("pupae") are diagnostic stage

Whitefly biology

- Parasitoid wasps attack "pupae"
- Species with white pupae will turn black if parasitized
- Not all black "pupae" are parasitized!

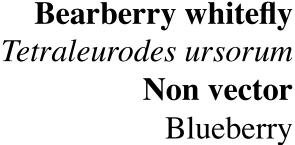
Whiteflies as vectors

• Known vector species

Bemesia tabaci, Trialeurodes vaporaiorum, T.

abutilonea, T. ricini (none in US)

Whiteflies found on small fruits



Greenhouse whitefly
Trialeurodes vaporariorum
Strawberry (in CA)

Silverleaf whitefly
Bemesia tabaci
Grape

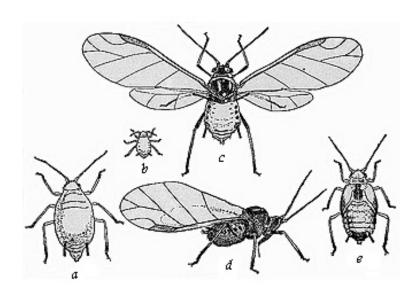
Iris whitefly
Aleyrodes spiroeoides
Non vector
Strawberry (in CA)

Unidentified whitefly species also found in blackberries

Aphid biology

Aphids

1/8" long, soft-bodied, pear-shaped, two cornicles, and adults are wingless or winged


Biology

<u>In fall</u>, develop male and female aphids, mate and lay overwintering eggs

<u>In spring</u>, eggs hatch into females that produce live young (parthenogenesis), densities build up quickly over multiple generations, suck on plant juice and excrete honeydew

Some young develop wings and disperse to other plants

In the southeast, many aphid species DO NOT reproduce sexually!

Aphids: a, wingless; b, newborn nymph; c and d, winged; e, nymph

Aphids as vectors

- Most common vector arthropod vectors of plant viruses
- Many known vector species

 Chaetosiphon fraegaefolii (strawberry aphid) and

 Aphis gossypii (melon aphid) the most significant
 for strawberries

 Amphorophora agathonica (large raspberry aphid)
 vectors Raspberry Latent Virus in the Pacific
 Northwest but does not appear to be an issue in the
 eastern US

Aphids found on small fruits

Strawberry aphid Chaetosiphon fraegaefolii Strawberry, uncommon in southeast Vectors SMYEV (persistent, circulative), SMoV (semi-

Melon aphid

Aphis gossypii Strawberry Vectors SMYEV (persistent, circulative), SMoV (semipersistent)

Aphids found on small fruits

Large raspberry aphid

Amphorophora agathonica
Raspberry, unknown from southeast

Leafhopper biology

Adults are 1/8" ½", wedge shaped and triangular in cross-section. Bodies are colored yellow, green, red, brown, gray or with color patterns. They jump and fly off readily.

Nymphs resemble adults but are wingless and molt leaving whitish cast skins on leaf. They can run rapidly, occasionally sideways, and hop.

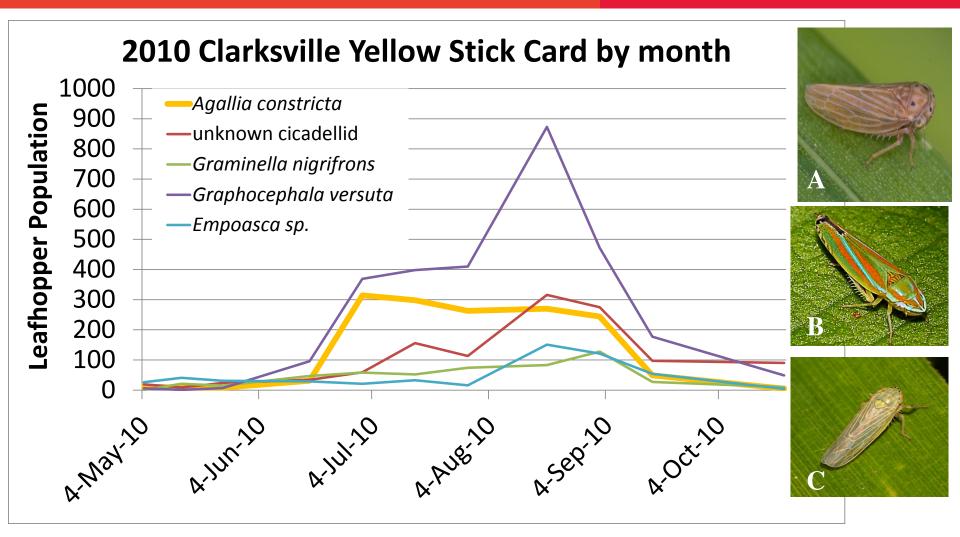
Leafhoppers as vectors

- Two Marafiviruses found in *Rubus* in Mississippi:
 - Blackberry virus S (B1VS) (Sabanadzovic & Ghanem-Sanadzovic 2009)
 - Grapevine Q virus (GVQ) (Sabanadzovic et al. 2009)
- Marafiviruses are persistent, circulative, transmitted by leafhoppers, and retained during molts (Burnt et al. 1996)
- Leafhoppers transmit virus within 1 to 4 weeks (Conti 1985)
- Transmission rates are higher if the leafhopper acquires the virus as a nymph rather than an adult

Leafhoppers in small fruits

- 32 genera of leafhoppers collected in AR blackberries
- The predominant leafhopper species are pictured below

Deltacephalus flavocostatus

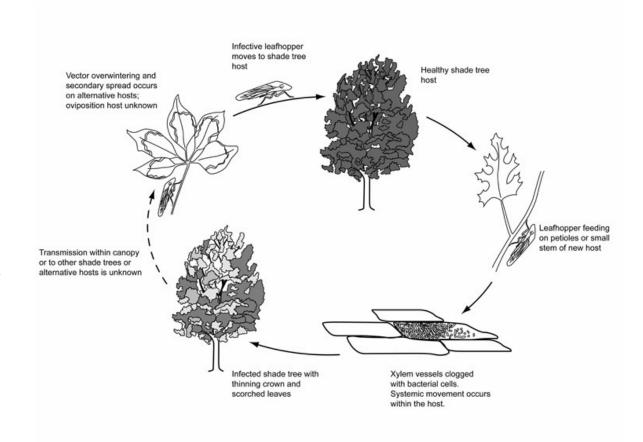

Exitianus exitiosus

Graminella nigrifrons

Graphocephala versuta

Agallia constricta

NC STATE UNIVERSITY



Three potential vector leafhoppers: A) Agallia constricta,

B) Graphocephala versuta, and C) Graminella nigrifrons; Photos: www.bugguide.net

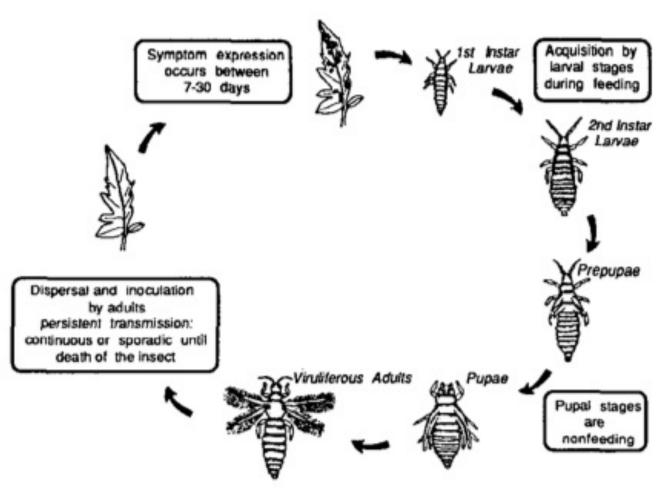
Leafhoppers as vectors

- Leafhoppers are most commonly associated with another **bacterial** plant pathogen in small fruits, *Xyllela fastidiosa*
- Causes Pierce's Disease in grape

Leafhoppers as vectors

TABLE 1. Number of leafhoppers trapped in four North Carolina vineyards in 2004 and 2005 and the percent composition of the most abundant species

	2004			2005		
Leafhopper species	Vineyard ^y	Number trapped	Percent	Vineyard ^y	Number trapped	Percent
Graphocephala versuta	ī	2,206	55	ĩ	1,848	50
	2	2,240	64	2	2,198	63
	3	5,076	51	3	4,560	40
	4	138	16	4	113	18
Oncometopia orbona	1	264	6	1	142	4
	2	56	2	2	102	3
	3	50	1	3	161	1
	4	20	2	4	58	9
Paraphelpsius irroratus	ĩ	291	7	ĩ	452	12
	2	165	5	2	102	3
	3	252	3	3	380	3
	4	74	9	4	88	14
Agalliota constricta	1	1,142	28	1	1,068	29
	2	965	27	2	1,027	29
	3	4,433	45	3	6,213	54
	4	535	64	4	290	47
Other species ^z	1	128	3	Ĩ	167	5
	2	98	3	2	72	2
	3	127	1	3	113	1
	4	74	9	4	72	12


y Vineyards 1, 2, and 3 were located in central North Carolina. Vineyard 4 was located in the northeastern Coastal Plain of North Carolina.

² Five leafhopper and one spittlebug species making up <2% relative abundance were grouped as other species.

NC STATE UNIVERSITY

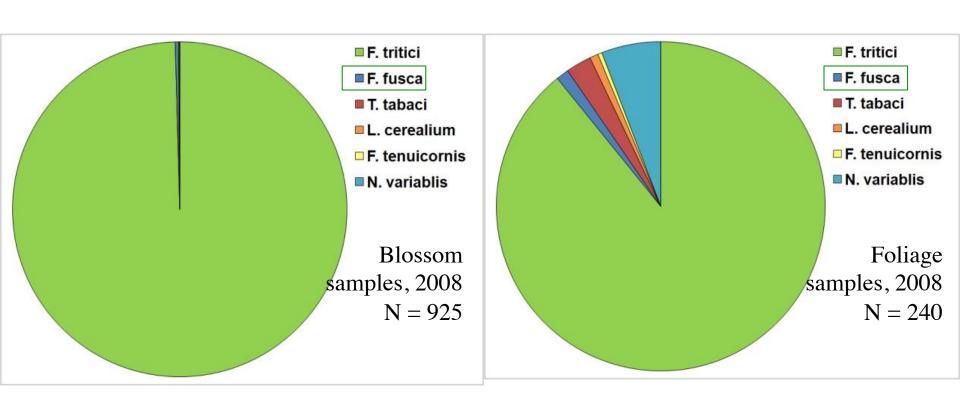
Thrips biology

Thrips are minute, cylindrical insects that primarily vector Tospoviruses

Multiple, overlapping generations occur

Thrips as vectors

• 14 thrips species vector Tospoviruses Frankliniella occidentalis, Thrips tabaci, Frankliniella schultzei, Frankliniella fusca, Thrips palmi, Scirtothrips dorsalis, Frankliniella intosa, Frankliniella bispinosa, Thrips setosus, Ceratothripoides claratris, Frankliniella zucchini, Frankliniella gemina, Frankliniella cephalica, Dictypthrips betae


Impatiens necrotic spot virus has been found in southeastern blackberries

For identification information, see Riley, et al. 2011. Thrips vectors of Tospoviruses. Journal of Integrated Pest Management. http://bit.ly/17wonaW

Thrips found on small fruit

Thrips species present on North Carolina blackberries

Eriophyid mite biology

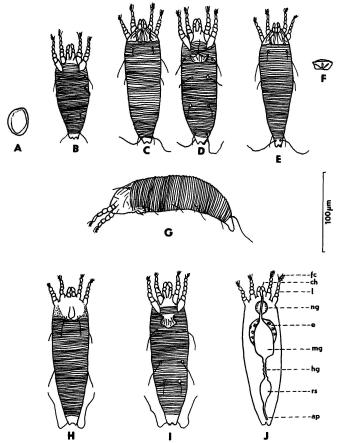


Fig. 2. A-G: Development stages of Eriophyes liosoma (Nal.): A-egg; B-nympha; C-protogyne in dorsal view; D-protogyne in ventral view; E-male; F-genital flap; G-deutogyne in lateral view; H-J: Morphology and anatomy of the female adult of Eriophyes fraxinivorus Nal.: H-dorsal view, I-ventral view; J-anatomy shown in longitudinal section; ap-anal part; ch-chelicerae; e-egg; fc-featherclaw; hg-hind gut; l-legs; mg-mid gut; ng-neurosynganglion; rs-rectal sac

- Small (<1mm)
- Spindle-shaped, with four legs and may be white, yellow or orange
- Not visible without magnification

From Vaneckova-Skuhrava. 1996. Journal of Applied Entomology.

Eriophyid mites on small fruits

Two known eriophyid mite species on small fruits
Blueberry bud mite
Acalitus vaccinii
Blueberries
Not known pathogen vector

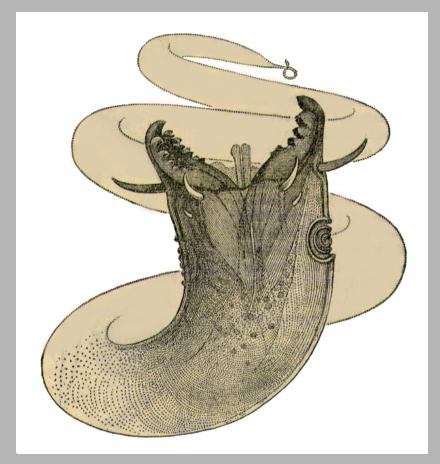
Redberry mite

Acalitus essigi

Caneberries

Causes abnormal ripening of fruit

Virus vector biology in southeastern blackberries


Seasonal capture of potential vector species of leafhoppers, mites, whiteflies and aphids in AR and NC

Correlation with virus infection timing Identification of potential vector species

Nematode Vectors of Plant Viruses

Terry Kirkpatrick, University of Arkansas Southwest Research & Extension Center R.J. Bateman, Arkansas Nematode Diagnostic Laboratory

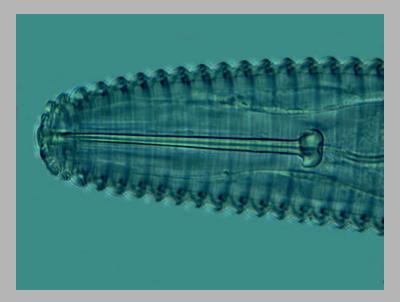
Plant Nematology 101

- Microscopic roundworms
- Largest phylum (Nematoda) other than insects
- Cosmopolitan in occurrence; beneficial, parasitic, free-living
- Plant-parasitic ca. 10% of known species
- Reproduce at high rates/short life cycle
- A few genera can vector plant viruses.

Plant-parasitic nematodes, like plant viruses, are obligate parasites:

It is in their best interest NOT to kill their host!

They may, however, severely limit yield - or they may impair quality (or they may do both).

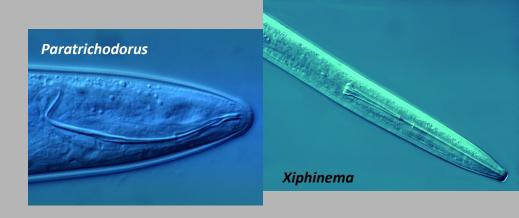


Taxonomy:

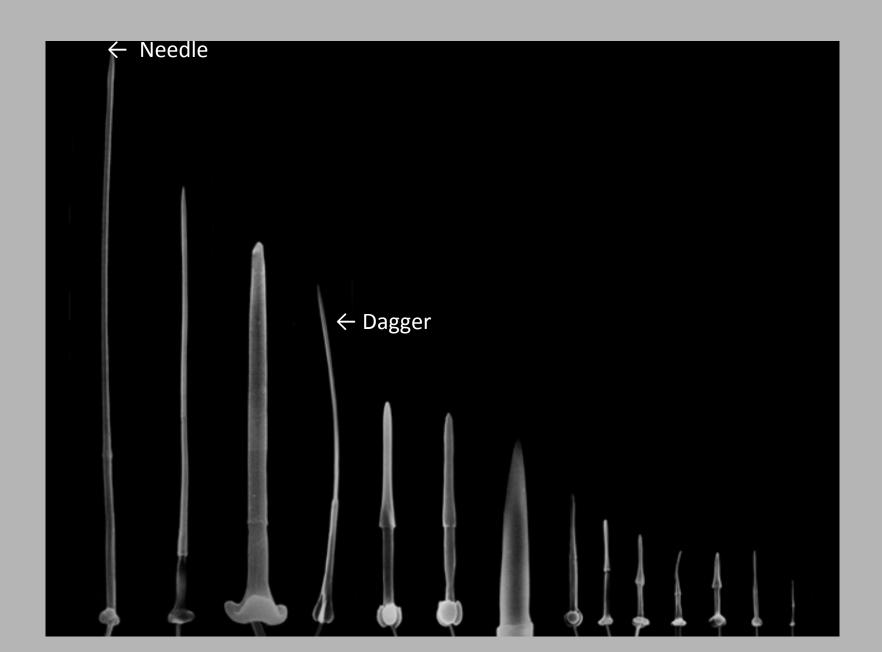
PHYLUM NEMATODA

CLASS: CHROMADOREA (SECERNENTIA)

Stylet (stomatostyle) with knobs
Not virus vectors
Examples: root-knot, cyst, lesion,
sting, spiral, ring

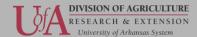


CLASS: ENOPLEA (ADENOPHOREA)


Stylet (odontostyle or onchiostyle) without knobs
Virus vectors

Examples:

Xiphinema (dagger)
Longidorus (needle)
Paratrichodorus (stubby-root)


Nematode Virus Vectors:

Paratrichodorus; Trichodorus (stubby-root)

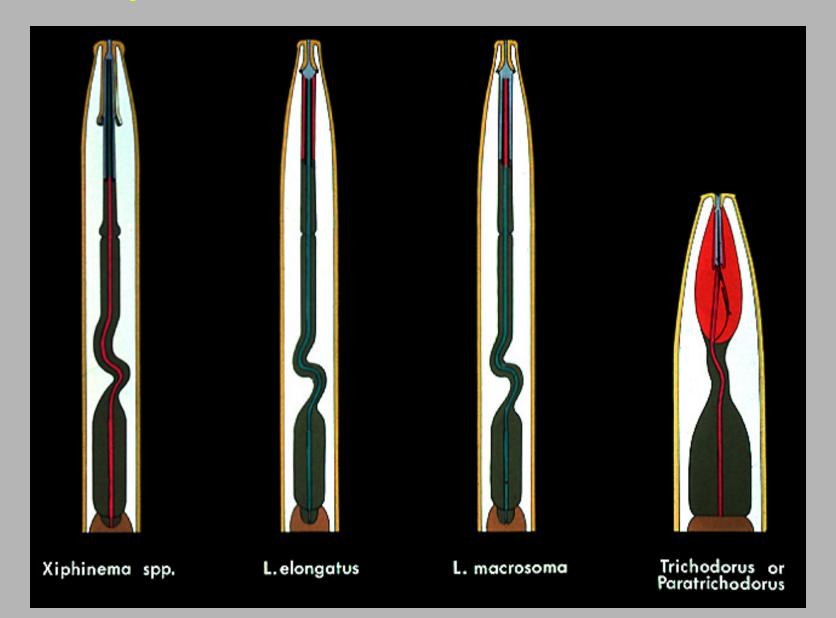
Longidorus (needle)

Rubus viruses known to be transmitted by nematodes

Virus	Vector	Notes/remarks
arabis mosaic (ArMV)	Xiphinema	Importance declined with use of methyl bromide; may increase in incidence in the future
cherry leafroll (CLRV)	Xiphinema; Longidorus	Not found in the U.S. on <i>Rubus</i> ; mainly Europe
cherry rasp leaf (CRL)	Xiphinema; Longidorus	Not found (yet) in <i>Rubus</i> in U.S., but broad host range that includes ornamentals and fruit trees
raspberry ringspot (RpRSV)	Longidorus; Xiphinema; Paratrichodorus	Found throughout Europe; broad host range
strawberry latent ringspot virus (SLRSV)	Xiphinema	Detected in <i>Rubus</i> only in Europe, but found in strawberry and mint in U.S.

Rubus viruses known to be transmitted by nematodes (continued)

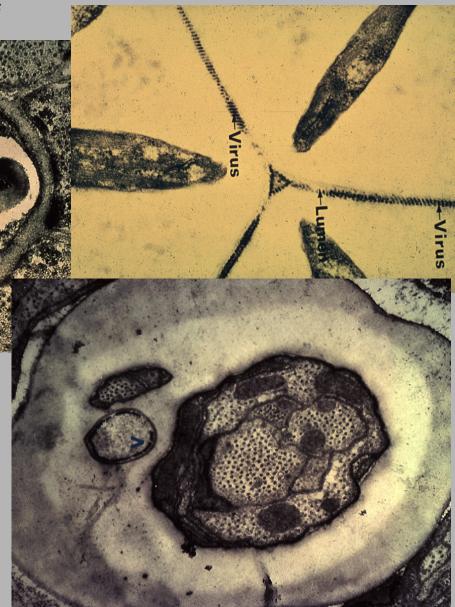
Virus	Vector	Notes/remarks
tobacco ringspot virus (TRSV)	Xiphinema	Multiple species transmit; U.S. presence
tomato black ring virus (TBRV)	Longidorus	<i>L. elongatus;</i> mainly Europe
tomato ringspot virus ToRSV	Xiphinema	Broad host range; X. americanum; found in U.S.


DIVISION OF AGRICULTURE RESEARCH & EXTENSION University of Arkansas System

Points to consider:

- The nematode may not be all that damaging alone, but the threshold is "any detectible level" because of virus transmission potential.
- Mechanisms of acquisition & release not well understood; acquired and transmitted while feeding, likely transmitted in dorsal gland secretions.
- Ability to transmit viruses is lost after a molt; must be re-acquired all life stages can transmit viruses.
- Specificity generally only one or a few species can transmit a particular virus or strain. Less specificity in U.S. than in Europe.
- Taxonomy of the nematode genera is in flux, so the specificity we now know (or think we know) will likely change.
- Virus particles are retained in specific locations in the nematode
 - -- Longidorus spp.: Either between the guide sheath and stylet or attached to stylet lumen wall.
 - -- Xiphinema spp.: Stylet lumen wall or the cuticular lining of the esophagus
 - -- Paratrichodorus; Trichodorus spp.: cuticular lining of esophagus.

Virus particle location in nematode vectors

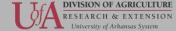


Tobacco rattle virus (TRV) in esophagus of *Paratrichodorus*

Raspberry ringspot in *Longidorus elongatus* odontostyle

Arabis mosaic virus particles in lumen of Xiphenema diversicaudatum food canal

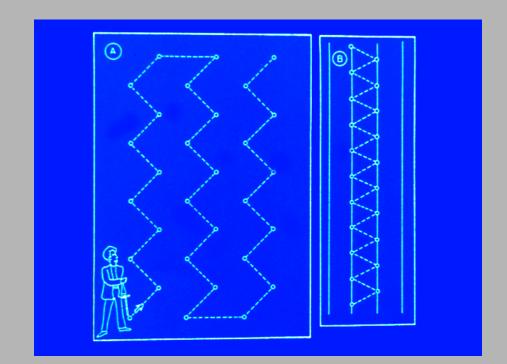
Management of Nematode-Transmitted Virus Diseases

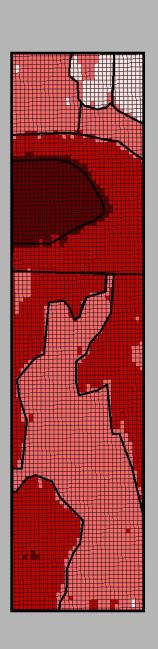


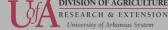
Avoiding a problem to begin with is the best disease control strategy.

Proper site selection is essential:

- Nematodes present? Detection/quantification are essential
- Weed hosts of virus present?
- Past crop history don't follow a known problem






Nematodes are NOT normally distributed

Detection/quantification depends on:

- nematode species
- time of year
- soil type
- crop & crop history
- how the sample is collected, handled, and assayed

Management of Nematode-Transmitted Virus Diseases

- Plant virus-free stocks.
- Minimize initial nematode vector population density
 - -- Clean fallow (1 year is good, 2 years would be better)
 - -- Soil fumigation with Vapam, Kpam, Telone or Basamid. (Paladin??)
- Plant virus-resistant cultivars where availability there are NO nematode-resistant cultivars.
- Ongoing weed management to minimize reservoir/alternative hosts.

Nematode Diagnostic Services

<u>Arkansas</u>

Arkansas Nematode Diagnostic Laboratory 362 Highway 174 North

Hope, AR 71801

Phone: (870) 777-9702, Ext. 128 or 119

Email: rbateman@uaex.edu or choward@uaex.edu

For more in-depth info:

http://www.aragriculture.org/nematodes/nematode clinic.htm

To submit a sample: http://dddi.org/ua/

Services and Fees: General - \$10, Soybean - \$20, Pinewood - \$25, Nursery - \$25, Rice Grain - \$25, Rice Grain Certified - \$75.

Out-of-state samples accepted.

outh Carolina

Clemson University Nematode Assay Laboratory
511 Westinghouse Road
Pendleton, SC 29670

Phone: (864) 646-2133; Fax: 864-646-2178

nemalab@clemson.edu

http://www.clemson.edu/plantclinic Fees: In-State - \$10, Out-of-State - \$30.

North Carolina

North Carolina Department of Agriculture and Consumer Services Agronomic Division Nematode Assay Section 4300 Reedy Creek Road Raleigh, NC

Raleigh, NC

Phone: 919.733.2655 Fax: 919.733.2837

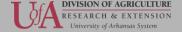
WEB URL: http://www.ncagr.com/agronomi/index.htm Services and fees: In-state - \$3, Out-of-State, Pinewood,

Research, PCR - \$10.

<u>Georgia</u>

Extension Nematology Laboratory 2350 College Station Rd. Athens, GA 30602

Contact Information: Dr. Ganpati Jagdale, gbjagdal@uga.edu


Ms. Judy Cross, jcross@uga.edu [706-542-9144]

http://plantpath.caes.uga.edu/extension/clinic.html

Services and Fees: All samples submitted through GA County Extension Office - \$12, All samples not submitted through County Office and Out-of-State - \$25, Root-knot Nematode Species - \$35,

Free-Living at Genus Level - \$45.

Nematode Diagnostic Services

<u>Virginia</u>

Nematode Assay Laboratory 115 Price Hall Virginia Tech Blacksburg, VA 24061-0331

Fax: (540) 231-7477 Email: jon@vt.edu

Phone: (540) 231-4650

Services and Fees: Routine assays - \$11,

Routine plus cysts (usually for soybeans and tobacco) - \$19.00

<u>Tennesse</u>

UT Plant & Pest Diagnostic Center 5201 Marchant Drive Nashville, TN 37211-5112

Phone: (615) 832-6802 Email: <u>tstebbin@utk.edu</u>

Services and Fees: Basic - \$5, Out-of-State \$15, Soybean Cyst Nematode Race Determination - \$15

The first step: Is it a virus?

Symptoms

Transmission

Movement

Detection

Symptoms

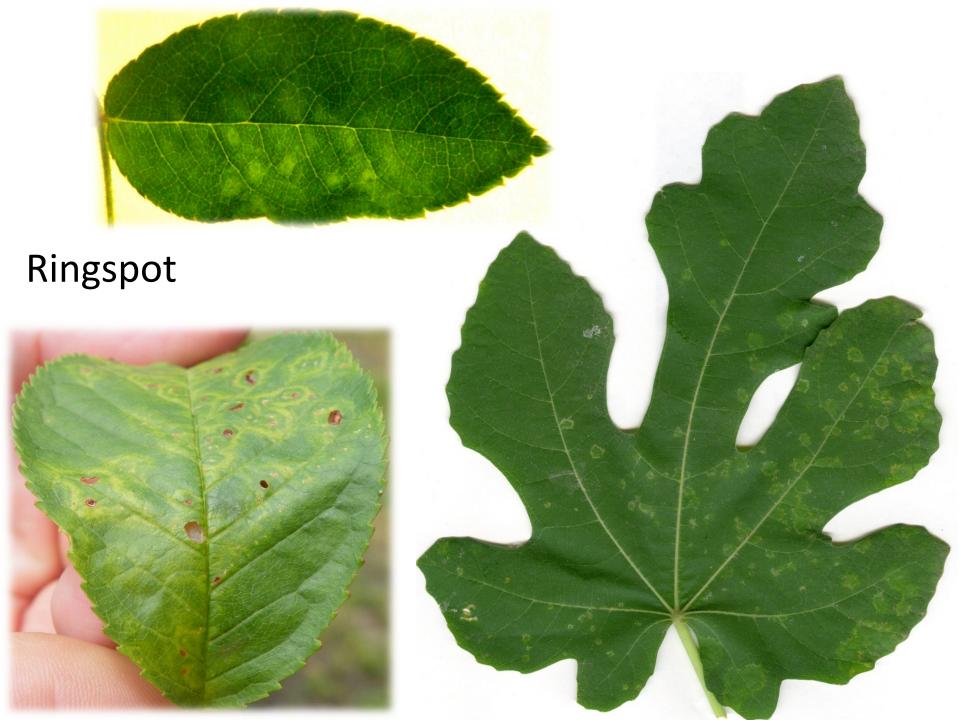
No fruiting bodies, no oozing

Viruses change the host physiology and adapt cell machinery to facilitate optimal replication


Some plants are more tolerant than others to virus infections giving different types of symptoms when infected with the same virus

Types of symptoms

Mosaic



Chlorosis

Mottle

Vein-Banding, Chlorosis, Clearing

Necrosis

Epinasty-malformation, enation

Fruit deformation

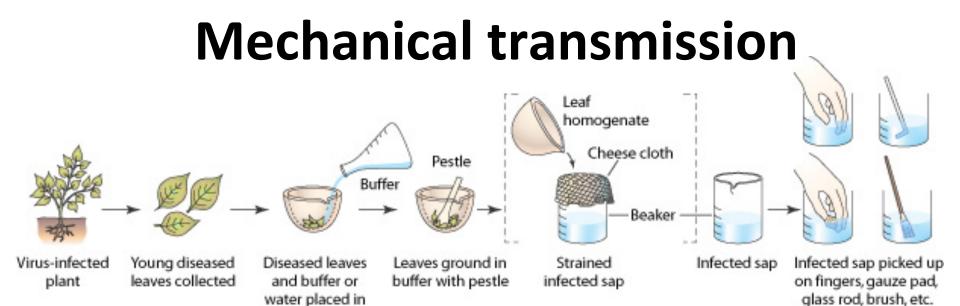
Pitting and grooving

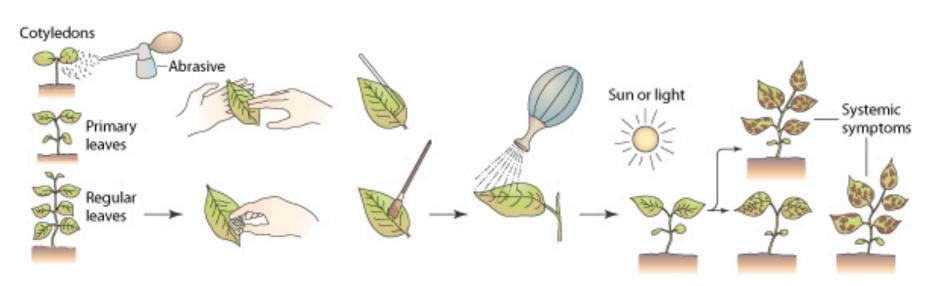
Cambium tissue in the grooved region disappears

Graft incompatibility

Apple mosaic virus
Apple vs. strawberry

*Tulip virus X*Lemon balm vs. gomphrena and tobacco





Tobacco ringspot virus Blackberry 'Apache' vs. 'Ouachita'

Cotyledons, primary leaves, or regular leaves are dusted with abrasive powder Infected sap rubbed on healthy plants with fingers, gauze pad, glass rod, brush, etc.

mortar

Inoculated plants must in some cases be rinsed with water immediately Inoculated plants kept in greenhouse or growth chamber Local lesions

Symptoms develop in 2 to 21 days

Agrios, 2005

Inoculation

Infected sap rubbed on healthy plants

Inoculated plants must be rinsed and watered soon after inoculation

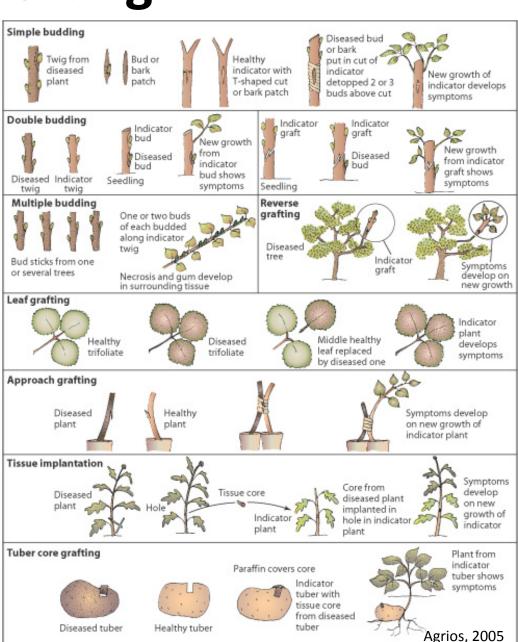
More often than not inoculations do not result in infection.

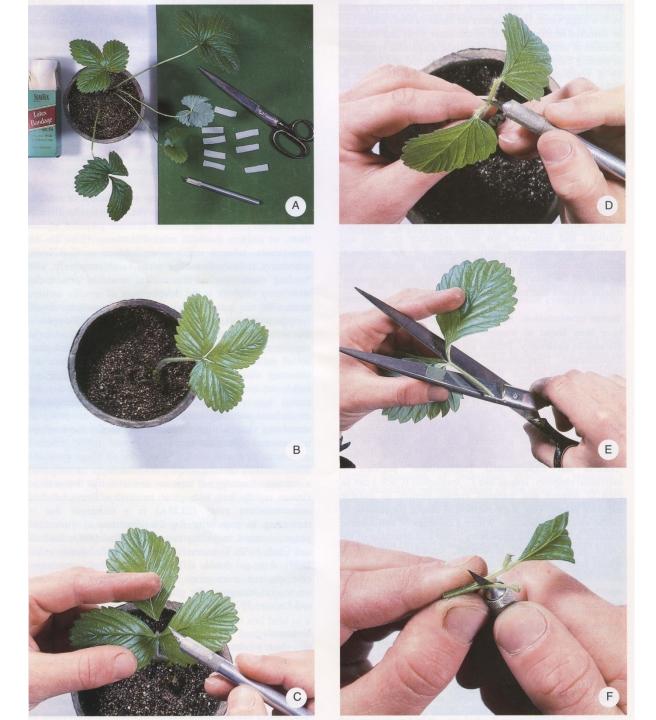
Symptoms develop in 3 – 21 days

Local lesions

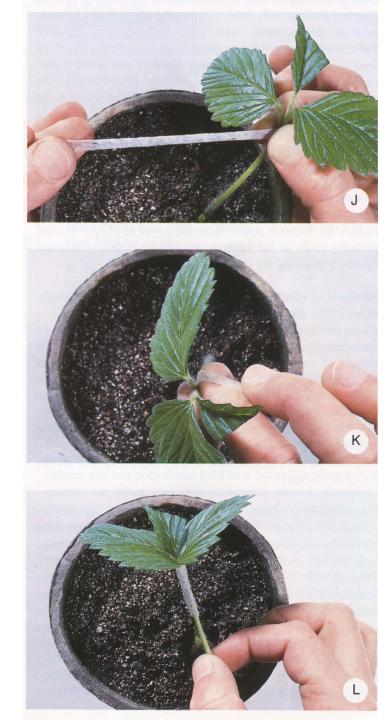
Cucumber mosaic virus
Transmission from
Anemone to Nicotiana

Fig leaf mottle associated virus-4 Transmission from Fig to Soybean





Grafting


The technique of choice for woody plants

An extremely valuable tool for agents yet to be characterized



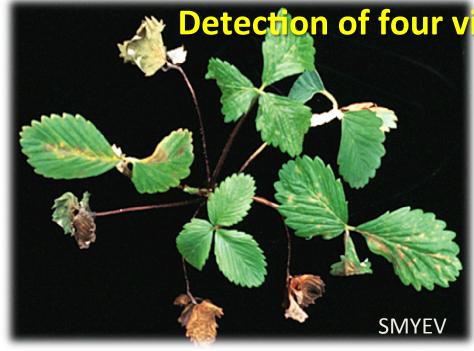
Leaf graftingStrawberry

Tissue transplantationBlueberry onto tobacco, raspberry and chenopodium

Strengths and Weaknesses

Transmission by Grafting or Mechanically:

- Detects wide range of organisms even if we lack information on the causal agent
- Often considered the standard to which other tests must be compared
- Can potentially detect a range of pathogens in a single test
- Requires considerable field and/or greenhouse space
- Labor intensive
- Can take several years to get results with some diseases of woody hosts


Cases where grafting has made a difference

Identified in 1958, virus discovered in 2001

Blackberry yellow vein disease is not caused by BYVaV

If several viruses cause the same symptom grafting onto multiple indicators can add to space needs and costs.

Immunology

Viruses are made of nucleic acids and proteins

Proteins trigger antibody (Ab) production. Abs are used by the vertebrate adaptive immune system to neutralize invading organisms including viruses

So we can use plant viruses and develop Abs against the coat protein(s)?

Yes, and the Ab can be used for sensitive detection of viruses

Enzyme-linked immunosorbent assay (ELISA) uses Abs developed against plant viruses for detection.

Sensitivity can reach pg of virus.

Major variants:

Direct (Double and triple Antibody sandwich) ELISA

Indirect ELISA

DAS ELISAAntibody binding to matrix

Enzyme-linked immunosorbent assay (ELISA) uses Abs developed against plant viruses for detection.

Sensitivity can reach pg of virus.

Major variants:

Direct (Double and triple Antibody sandwich) ELISA

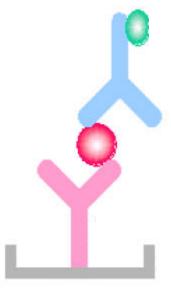
Indirect ELISA

DAS ELISAAddition of plant sap/virus

Enzyme-linked immunosorbent assay (ELISA) uses Abs developed against plant viruses for detection.

Sensitivity can reach pg of virus.

Major variants:


Direct (Double and triple

Antibody sandwich) ELISA

Indirect ELISA

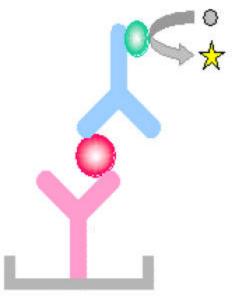
DAS ELISA

Addition of secondary antibody, conjugate

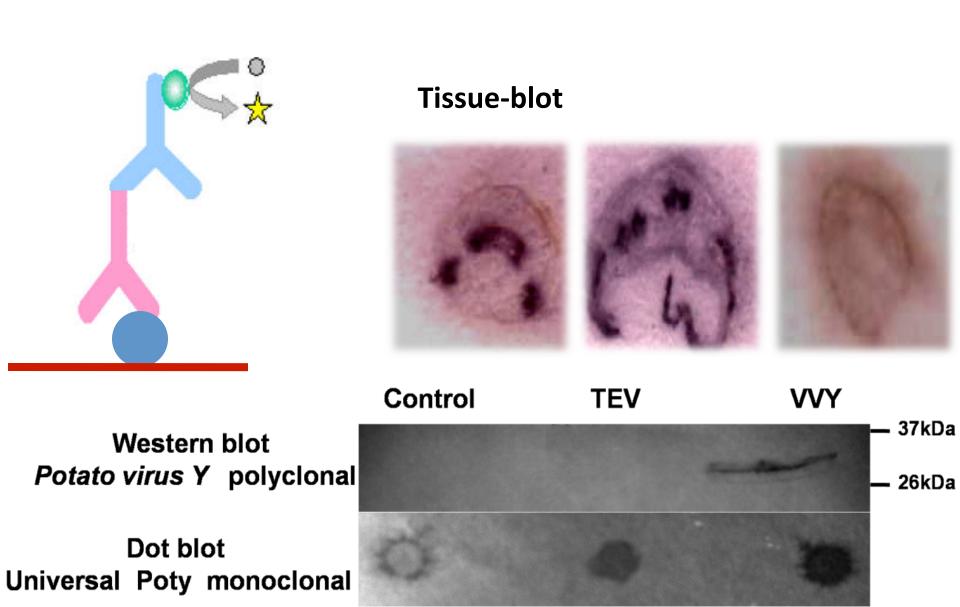
Enzyme-linked immunosorbent assay (ELISA) uses Abs developed against plant viruses for detection.

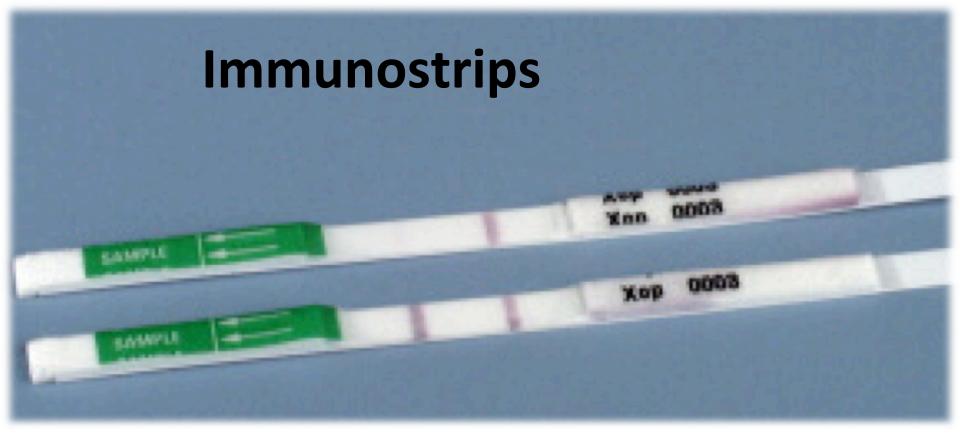
Sensitivity can reach pg of virus.

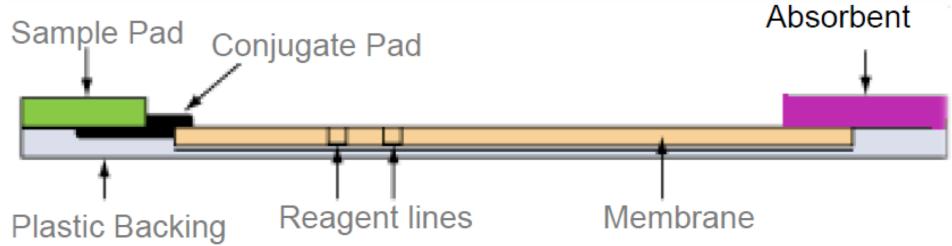
Major variants:


Direct (Double and triple

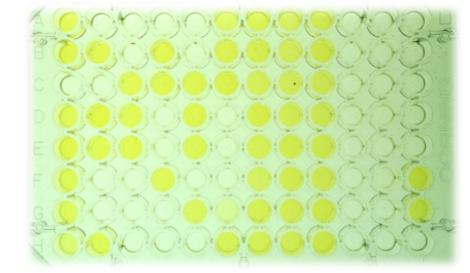
Antibody sandwich) ELISA


Indirect ELISA


DAS ELISA


Addition of substrate, color change

Membrane-based immunoassays

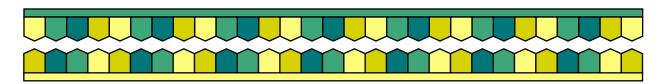


ELISA advantages/disadvantages

Rapid, sensitive (in most cases), low cost, easy, many excellent means of sample extraction, suitable for large scale testing and automation

Inconsistent supply of antibodies, some hosts or pathogens require special extraction buffers, specificity of antibodies can be a problem - may only detect some strains of a

pathogen

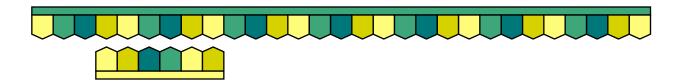

PCR and RT-PCR

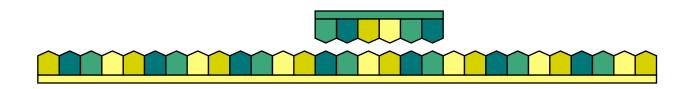
- Virus sequence needed to design primers
- When working with RNA viruses a reverse transcription step is needed to obtain cDNA
- Reverse transcriptase is a RNA-dependent and a DNA dependent DNA polymerase
- Reverse transcription yields can vary up to 100-fold with the choice of reverse transcriptase and primers and cDNA yield is gene dependent. Be careful in qPCRs

PCR

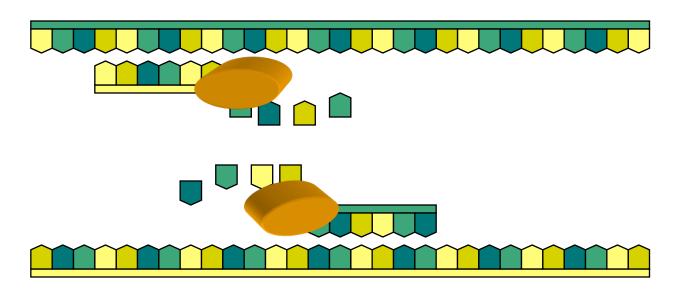
unique sequence of interest

DNA or RNA template

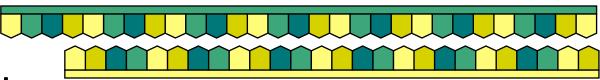

Make a DNA copy if RNA template


Heat to 95°C to separate two strands

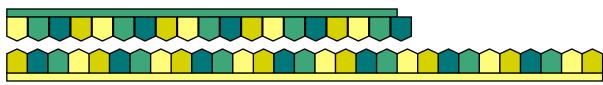
unique sequence of interest



Anneal primers to the two separated templates

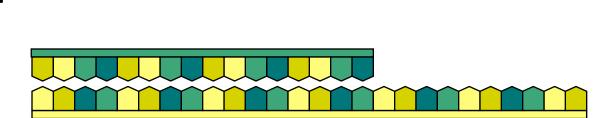

unique sequence of interest

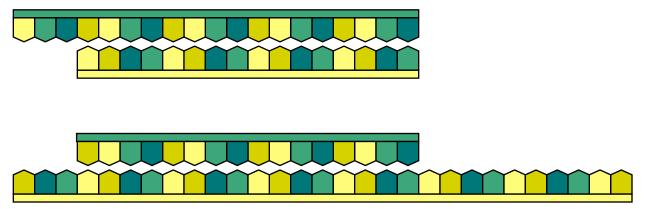
Taq DNA polymerase adds dNTPs



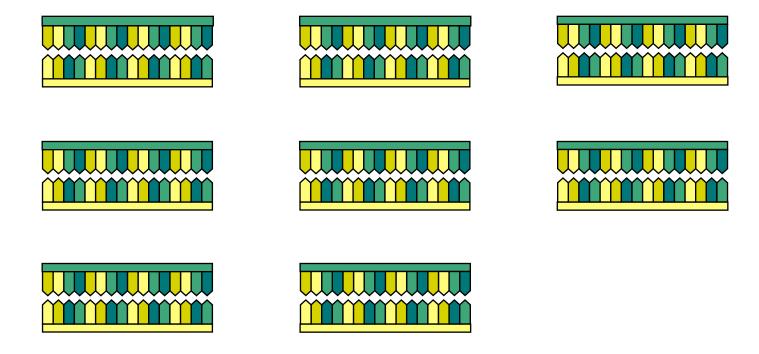
End of 1st Cycle

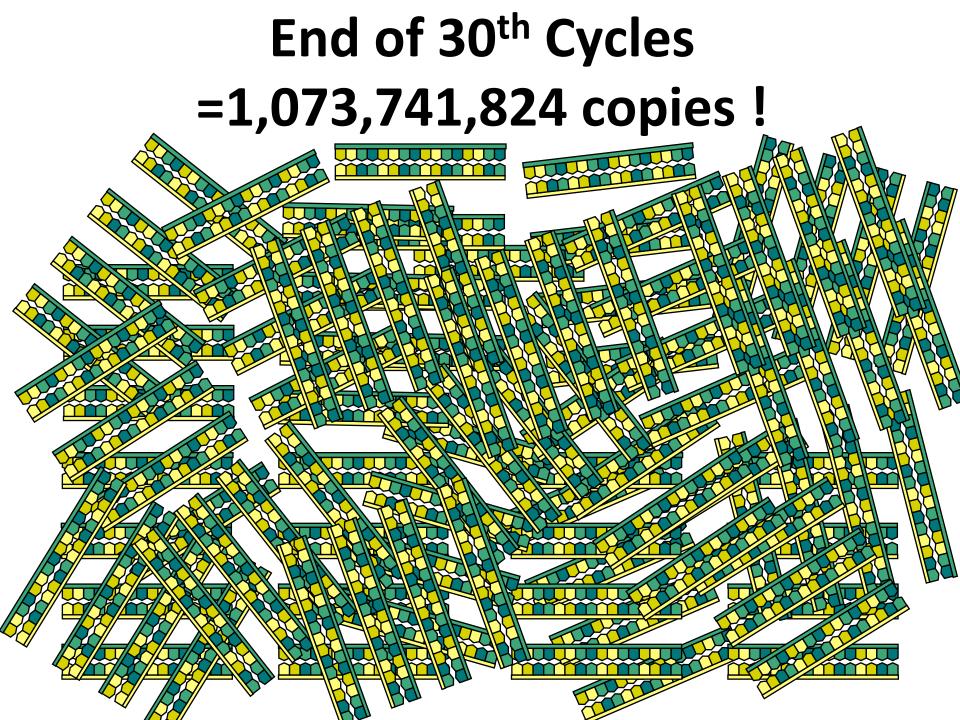
unique sequence of interest


PCR has generated two copies of unique sequence

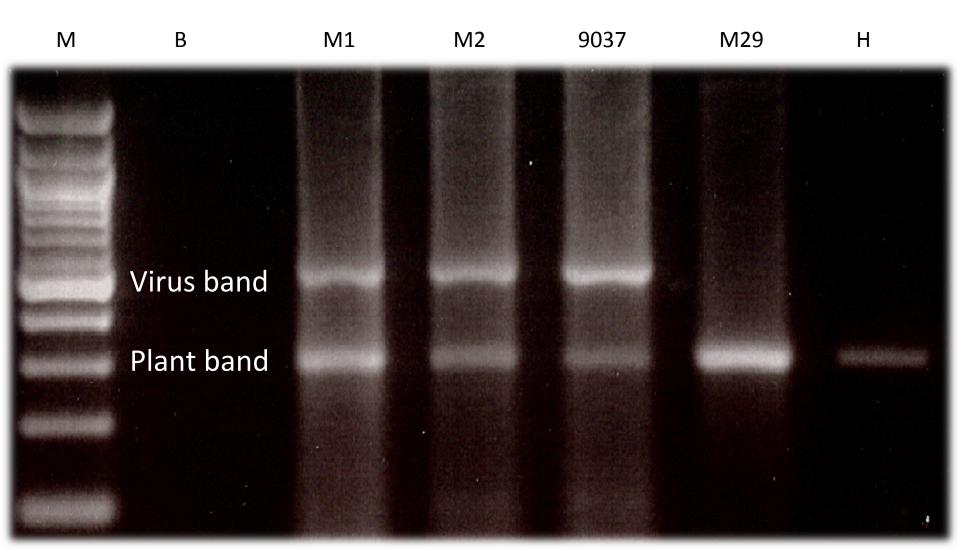


End of 2nd Cycle


unique sequence of interest


Four additional copies of the unique sequence have now been made, using the original and new copies as templates

End of 3rd Cycle


Problems with RT-PCR

Poor quality RNA

False negatives due to inhibitors, include internal controls

False positives – nonspecific bands on gel sequence several bands to confirm specificity

Use internal controls to monitor quality of assay

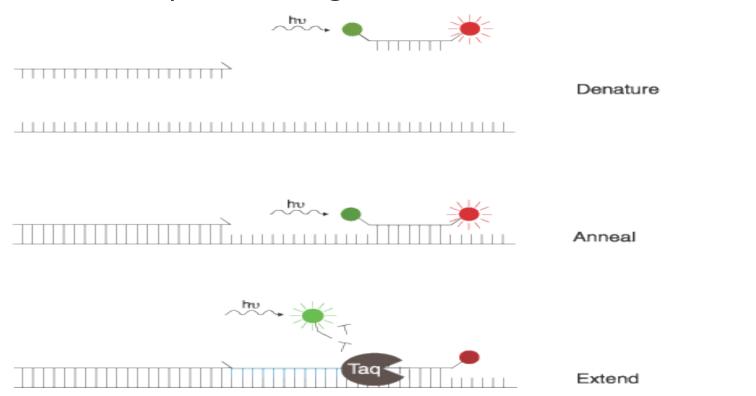
PCR

Sensitive, conserved sequences can be used to detect range of strains or species, sequencing of amplicons provides information on phylogeny, can detect several pathogens at once.

Requires knowledge of sequence or phylogeny of pathogen, must use internal control to ensure extraction quality. RNA extraction can be difficult from some hosts leading to variable results.

Requires more training than ELISA, must depend on more than just amplicon size to avoid false positives, expensive in terms of time and enzymes. May get false negatives if there is significant virus diversity.

Real-Time PCR


Avoids post amplification analysis, can be quantitative, fast turn around time.

Expensive, requires extreme care in setup to avoid false negatives.

Intercalating dyes such as SYBR green are not suitable for multiplexing.

Fluorescent reporter (Tagman)

- Probes
 Primers and probes anneal polymerization
- The 5' exonuclease activity of *Taq* digests the probe as it copies and releases the fluor
- Without the quencher, fluorescence increases at each cycle as more probe is digested

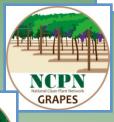
In a nutshell

Viruses change host physiology and thus symptoms

Detection techniques

The more broad the technique the less sensitive (in general)

Immunology: Great for large number of samples, not as sensitive as molecular techniques


Molecular: Virus diversity can lead to false negatives

Next generation sequencing: Instant diagnosis of any pathogen???

National Clean Plant Network (NCPN)

Erich S. Rudyj Program Coordinator

USDA/APHIS/PPQ Science and Technology National Clean Plant Network (NCPN)

FARM BILL 2008

Food, Conservation, and Energy Act of 2008 <u>Sec. 10202</u> National Clean Plant Network (NCPN) – <u>Program Background</u>

- <u>Establishment</u> USDA shall establish a 'National Clean Plant Network' for pathogen diagnosis and <u>elimination</u>
- **Products** Clean plant material made available to States for certification programs; and to private nurseries/producers
- <u>Consultation</u> Consult w/State Departments of Agriculture, Industry, and Universities; <u>governance</u>
- <u>Cooperation</u> Use <u>existing</u> Federal/State clean plant centers
- *Funding* \$5m/yr. x 4 years >2009-2012<(\$20m total) till expended

Key NCPN Principle

NCPN <u>establishes</u>, <u>administers</u>, and <u>manages</u> a <u>network</u> of <u>collaborating</u>
clean plant centers and programs specializing in <u>plant pathogen identification and therapy</u>.

To do this, NCPN identifies and supports
a small but appropriate number of
stakeholder focused, nationally oriented
clean plant centers
that serve as centralized, cost effective hubs
to diagnose and 'clean' plant material and
provide foundational services
to industry and States.

NCPN Activities – Primary and Related

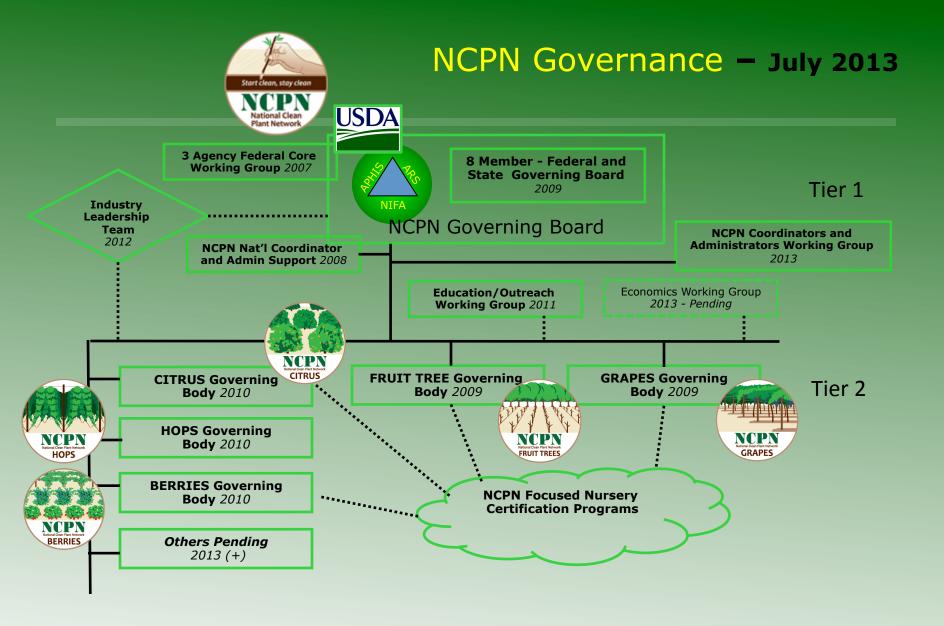
NCPN Supports the <u>Primary</u> <u>Service Activities</u> for Clean Plant Center Activities:

NCPN also Supports Related Needs for Clean Plant Center Activities, including:

- Diagnostics
- Therapeutics
- Foundation Plantings

- Network Governance
- Technology/Methods Development
- Equipment and Supplies
- Education/Outreach/Economics
- Facilities Upgrading
- Clean Nursery Activities

What crops does NCPN work on?


NCPN supports diagnostics and therapeutics on specialty crops that are generally restricted for entry into the USA, including:

- **Fruit Trees** Stone and Pome Fruits, including Ornamentals
- **Grapes** Table, Raisin, and Wine Grapes
- <u>Citrus</u> All Types
- <u>Berries</u> Fragaris, Rubus, and Vaccinium
- Hops

Other crops considering NCPN entry include:

Sweet Potatoes, Roses, Olives, Table Potatoes, Garlic, and Ornamental Nursery Crops.

GRAPES

NCPN Tier 1 Governance and Support

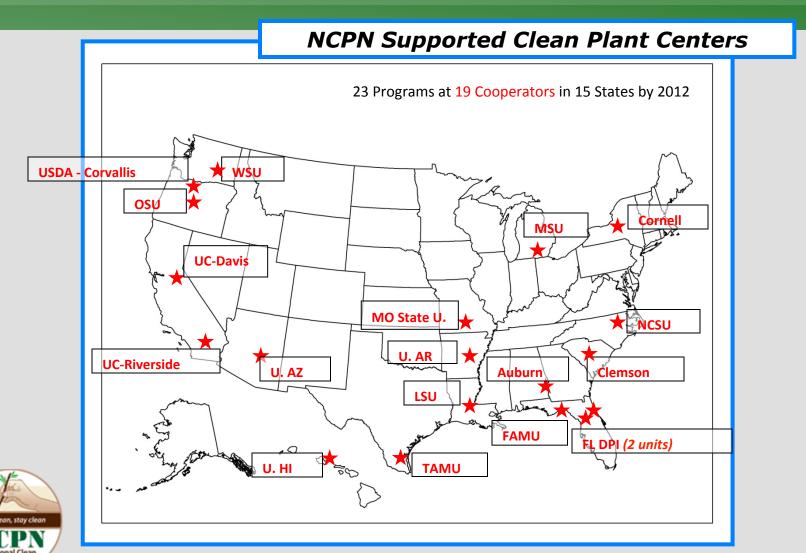
<u>Core Working Group – Tier 1</u>

- ➤Tom Bewick NIFA
- ➤M. Watson (R. Johnson) APHIS
- ➤ Gail Wisler ARS

NCPN Nat'l Coordination / Support

- ➤ Tammy Kolt APHIS
- ➤ Erich Rudyj APHIS

National Governing Board - Tier 1 - Active


- ➤ Wayne Dixon FL Dept. Agric.
- > Joseph Postman ARS/Germplasm
- ➤ Carl Schulz NJ Dept. Agric.
- ➤Tom Wessels– WA Dept. Agric.
- ➤ Geir Friisoe MN Dept. of Agric.

National Governing Board - Tier 1 - Former

- ➤ Murali Bandla APHIS (new position)
- ➤ Bill Dickerson NC (retired)
- ➤ Ken Rauscher MI (retired)

What Centers or Programs are in NCPN?

http://nationalcleanplantnetwork.org/

NCPN Program Funding History – FY 2008 - 2012

Specialty Crop	NCPN Funding 2008	NCPN Funding 2009	NCPN Funding 2010	NCPN Funding 2011	NCPN Funding 2012	Total Funded
Fruit Tree	\$ 264,980	\$ 1,606,388	\$ 1,205, 232	\$ 985,336	\$1,011,526	\$ 5,073,462
Grapes	\$ 456,150	\$ 1,453,456	\$ 2,151,194	\$ 1,764,681	\$2,155,218	\$ 7,980,699
Hops	N/A	N/A	\$ 146,169	\$ 154,922	\$169,709	\$ 470,800
Citrus	N/A	N/A	\$ 1,337,889	\$ 1,349,891	\$1,170,444	\$ 3,858,224
Berries	N/A	N/A	\$ 742,887	\$ 577,601	\$639,019	\$ 1,959,507
Crosscutting	N/A	N/A	N/A	\$ 125,811	\$137,368	\$ 263,179
	\$ 721,130	\$ 3,059,844	\$ 5,583,371	\$ 4,958,242	\$5,283,284	\$ 19,605,871 (2008-2012)

NCPN Program Deliverables --- So What?

- 19 Laboratories >>> Supported and Improved
- 150,000 Lab Tests / 40,000 Field Tests on High-Value Accessions
- <u>2,000 Accessions</u> subjected to <u>Diagnostics</u>
- 1,500 Accessions subjected to Therapy
- 1,250 Accessions added to Foundation Plantings
- 4,500 Accessions maintained in Quarantine Foundations
- 350,000 Clean Plant Units supplied to Industry for Increase
 - High Value, Pathogen Tested, Cleaned > <u>Buds</u>, <u>Scions</u>, <u>Plantlets</u>, <u>Rootstocks</u>

Grapes

Berries

Citrus

Hops

NCPN Education/Outreach Programs

Specialty Crop Brochures

MY NOTE: WHO BE COST WHO EXPLOYED ON TO BE APPROXISED TO STREET BASE BY A STREET OF THE CARROLL THE CARROLL WHO EXPLOYED AND THE CAR

Missions, which and although pull-operation on the transmission to execut the special for more limit their grown and greatly reduce below. To proposit, the special path of the proposition of the special because a Greatly Proposition. In Consider Commission Mobiled Distriction.

Principals by the link of interiors technique during to cooking, the principal interiors the largest section of the largest sections. Opening the largest to section of the largest section of the largest sections and the largest section of the largest section.

IN 19710, Hospital advisor, sederation special advisor, sederation of the Control of the Performance of the

The Over at 1902/00 of the BOOM - Calls 5-LD shoulder stretake 0.00 own of the BOOM - Calls 5-LD shoulder stretake 0.00 own of the BOOM - Calls 5-LD shoulder are designed to the account of the Calls 5-LD shoulder are designed to the account of the Calls 5-LD shoulder are designed to th

Coulded to emprove as developing the devices proceedings to

STANSON, THANSON, AND USED ONE THAN STANDARD BLOCKS IN WORLD CHEST PROPAGATION PROBLEMS TO THE PROPAGATION

Marking with the Transferridge, with other the relationships and

Marking versing producting with other memorans as the non-month of perspects within the native yielders.

Country and promote that management becomes by use

Charles and prompte best grandgened a processes or called beneather participant sector of their processes or materials.

to produce he sitty amas trust grope as imperative to start with beatty piersocrop yelds of beter quality but Prog. diseases can help produce healthy an

The National Clean Plant Network - B grops, NCPN - Derrests part of a not and pathogen elimination services an included in state certification grogram.

Our Mission:

- to provide high quality donally s and pests that cause economic
- to exhance the global compets
- to enhance existing dear plant
- to educate statisholders about

Our Gool:

- · to continually improve and enh release of being selections has
- to establish, maintain, and upg and leder all rains and regulation
- to develop and promote best to SUPPORTED BY CHISTORICO DES
- · to encourage, develop and

FRUIT TREES

Viruses rob fruit trees of yield, quality and flavor.

- Some viruses directly damage fruit quality resulting in poor taste and texture w
- Even viruses that do not cause obvious disease symptoms can decrease yield

Viruses devastate fruit and nut growing regions.

- in the 1940s, viruses caused cripping diseases of peaches and cherries in '
- In the 1950s, little cherry disease decimated the sweet cherry industry in B
- in the 1990s, plum pox virus forced the destruction of thousands of peach

Viruses spread.

- Left unchecked, viruses spread to healthy trees in the orchard.
- Ropagating and planting inteded trees is one of the most damaging way.
- The only "cure" in the orchard is to remove virus infected trees and rep. stock. No chemical spray will eliminate viruses once a tree is infected.

At National Clean Plant Network - Fruit Trees, we f

- NCPN-Fruit Trees provides commercial nurseries and growers with !
- virus-tested and tree ("dean") of important virus-like agents. NCPN-Fruit Trees eradicales plant diseases. Flanting "dean" trees
- orchards leading to better plant health with better, more efficient pro NCPN-Fruit Trees eliminates viruses from infected selections. We ability to eliminate viruses from infected frees.
- NCPN-Fruit Trees keeps U.S. growers and nurseries competitive varieties bred in the United States or imported from abroad. Thes seasons and profit margins.

Our Mission:

To provide the greater fruit and nut tree community with wirus-tester stock production. Tris sale exchange of virus-tested propagation in from disease, improves productivity and opens global markets to o

Healthy plant material is the key to cost effective and sustainable production of specialty crops. Easier to propagate than common planting slook, healthy planting quality. How do you produce this high quality plant mater valuable selections for viruses and other plant diseases. blother grop yields and better grop identify pathogens and pathogen elimination techniques

Established in 2008, the National Clean Plant Network specially crops network. Our mission is to efficiently prematerial to all parts of the grape Industry, Including table consumers. NCPN - Grapes is a partnership between research and extension on grape health issues and si

The NCFN - Grapes operates under the umbreila of t (APHIS). Clean plant centers provide quarantine serv pathogens that can be difficult and costly to control. tested for unwanted pathogens for at least two years technology, if a disease is found, the plant is subject standards are even stricter than state and feder at reof these tests is it released to the public.

NCPN - Grapes de an plant center's maintain colle the foundation for many state-certification program

The National Clean Plant Netwo Cornell University, Geneva, New York

The Cornell program has facilitated the introduc Europe Foreign and domestic wines that test of procedures are propagated and disseminated Agrebacterium vite, the pathogen that causes quarantine (FEG) plantings and is exploring in delected. Cornell extension special sis condu a major emphasis on New York State and the http://grapesandwine.cals.comell.edu.cals.igi

NATIONAL Clean Plant Network

http://www.nationalcleanplantnetwork.org

Start clean, stay clean National Clean

Our Promise:

http://nationalcleanplantnetwork.org/

(wh

osite at

NCPN Websites

More information about NCPN is available at the following sites:

http://nationalcleanplantnetwork.org/

http://www.aphis.usda.gov/plant_health/ncpn/index.shtml

Farm Bill 2013/2014 Update and NCPN

Discussion

Animal and Plant Health Animal and Plant Health

For more information:

Erich S. Rudyj, Coordinator **National Clean Plant Network (NCPN)**

USDA, APHIS, PPQ

Science and Technology

4700 River Road, Room 4A.03.13

Riverdale, Maryland 20737

Phone >>> (301) 851-2277

E-Mail >>> Erich.S.Rudyj@aphis.usda.gov

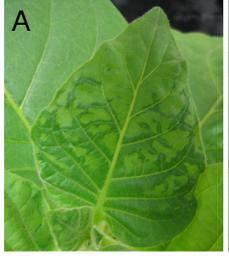
or

E-Mail >>> NCPN@aphis.usda.gov

THANK YOU

Virus-Host Interactions

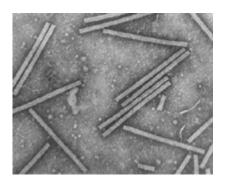
M. Elena Garcia, Ph.D. Extension Fruit and Nut Specialist


Viruses

- Infectious pathogens
- Non-cellular
- Not active outside the cell
- Obligate parasites
 - Small piece of nucleic acids surrounded by a protein coat
 - Depend on host's machinery to reproduce
- Infect all types of living organisms, but most infect only one type of host

History

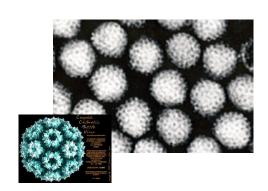
- 1882- Adolf Mayer: Transmission of tobacco mosaic disease by plant extract
 - Infectious agent could not be isolated
- 1892- Dimitri Ivanofsky: Causative agent of tobacco not retained by filters
 - Cannot be cultivated in vitro
- 1898 Martinus Beijerinck: Causative agent can be cultivated in live tissue

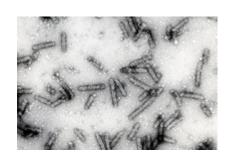

Morphology

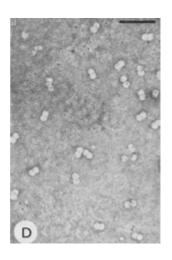
- Composed of two principal parts
 - Genome
 - Nucleic acid (NA)
 - Protective shell (coat)
 - Protein
 - Capsid
 - Some viruses have an outer membrane
 - Lipoprotein membrane

Plant viruses

- Two protein shell types
 - Helical (elongated)
 - Rigid rods
 - Flexuous filaments
 - NA is highly ordered: helical confirmation (as proteinaceous capsid)
 - Icosahedral
 - Baccilliform
 - Two incomplete icosahedral
 - NA forms a partially ordered ball inside the capsid




Rigid rods


Flexuous filaments

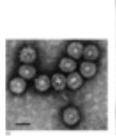
icosahedral

bacilliform

Twin virions composed of two joined incomplete icosahedra

Virus Types

- Helical- the NA is highly ordered: it assumes the same helical conformation as the proteinaceous capsid.
- Icosahedral the genomic NA forms a partially ordered ball inside the proteinaceous capsid.
- Self-assembly in a test tube if the NA and protein subunits are incubated under proper conditions.


Genome Types

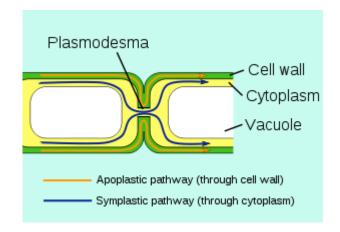
- Single stranded (ss), positivesense RNA
 - Bromoviridae, Letroviridae
 - Cucumovirus
- Single stranded negativesense RNA
 - Bunyaviridae
- Double-stranded RNA
 - Reoviridae

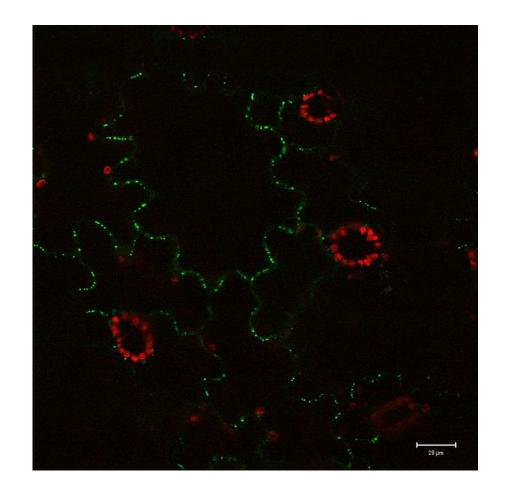
Genome Types

- dsDNA
 - Pararetroviruses
 - Caulimoviridae
 - Replication involves and RNA intermediate
- ssDNA
 - Geminiviridae
 - dsDNA intermidiate

Systematics

- First plant virus was purified and classified in mid 1930's
- Virus named after host plant and symptom
 - Tobacco mosaic virus- TMV
- Largest subdivisions
 - Chemical form of genome
- Genera and families derived from an important within the family
 - Brome mosaic virus


Plant Viruses- General


- Approximately 1000 different plant viruses
- Losses due to plant viruses ~ \$ 6 x10¹⁰
- Do not have specific cellular receptors to enter cell
 - Relay on mechanical breaches of cell's integrity
 - Vectors
 - Mechanical damage

Entrance

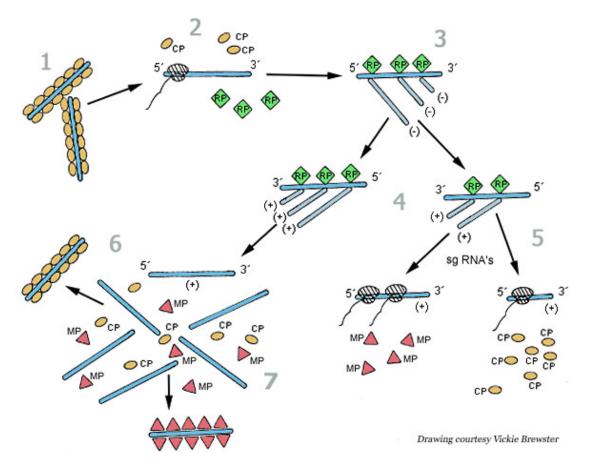
- Many plant viruses have evolved specialized movement proteins which modify the plasmodesmata.
 - One of the best known examples of this is the 30k protein of tobacco mosaic virus (TMV). This protein is expressed from a sub-genomic mRNA and its function is to modify plasmodesmata causing genomic RNA coated with 30k protein to be transported from the infected cell to neighboring cells.

Transmission of Plant Viruses

- Seeds
- Vegetative propagation
- Mechanical
- Vectors
 - Bacteria
 - Fungi
 - Nematodes
 - Arthropods
 - Arachnids- mites

Reproduction

- Passive entrance into cytoplasm
- Removal of protein coat
- Cell mediated expression of viral genome
 - Transcription apparatus (DNA viruses)
 - Translation apparatus (all viruses)
 - Proteins
- DNA viruses must be transported to the nucleus

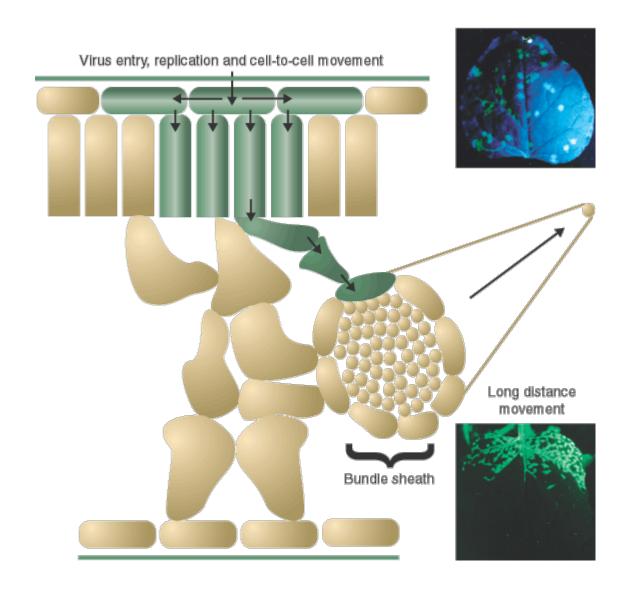


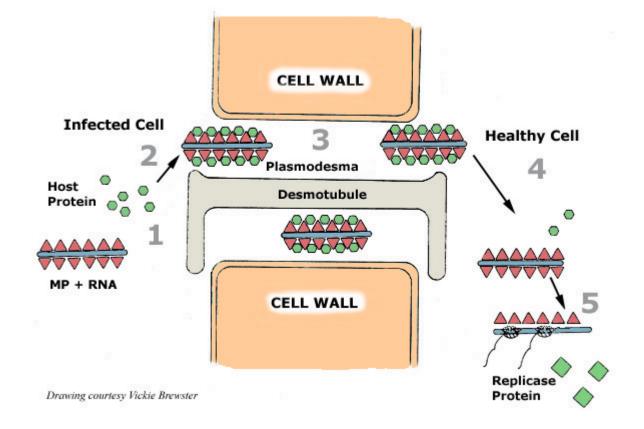
- Viron enters cytoplasm passively
- Partial or complete removal of coat protein in the cytoplasm
- Mediation of expression of viral genome by providing the transcription apparatus and translation apparatus

Protein

Three types of proteins

- Replication proteins for nucleic acid production
- Structural protein for protein shell
- Movement protein for transport between cells




The replication cycle of *Tobacco mosaic virus* (TMV). TMV enters a wounded plant cell to begin the replication cycle [1]. As the coat protein (CP) molecules are stripped away from the RNA [2], host ribosomes begin to translate the two replicase-associated proteins. The replicase proteins (RP) are used to generate a negative-sense (- sense) RNA template from the virus RNA [3]. This - sense RNA is, in turn, used to generate both full-length positive-sense (+ sense) TMV RNA [4] and the + sense subgenomic RNAs (sgRNAs) [5] that are used to express the movement protein (MP) and CP. The + sense TMV RNA is either encapsidated by the CP to form new TMV particles [6] or wrapped with MP [7] to allow it to move to an adjacent cell for another round of replication (Drawing courtesy Vickie

Movement in Cell

- Plasmodesmata
- Modification to plasmodesmata
 - Process may take from one to a few hours
 - TMV
- Successful colonization
 - Enter the vascular system
 - Phloem sieve elements
 - Photosynthates flow
- Back into cells

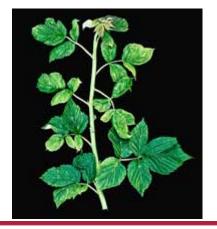
Cell-to-cell movement of *Tobacco mosaic virus* (TMV). In this model, the movement protein (MP) binds to the viral RNA [1]. Host proteins and/or other virus-encoded proteins may be included in the MP-complex [2]. The MP-complex then moves from cell-to-cell through the plasmodesmata [3]. When the complex is localized to a new cell, the MP (and any host proteins) are presumably released from the TMV RNA [4], allowing for translation of the genomic RNA to express the replicase proteins and to initiate a new round of replication [5]. (Drawing courtesy Vickie Brewster: from K.-B. G. Scholthof 2000).

Morphological Symptoms

- Symptoms range from symptomless conditions to severe disease and plant death
 - Chlorosis and necrosis- direct damage due to virus replication
 - Hypoplasia- localized retarded growth-leads to mosaicism
 - Hyperplasia- excessive cell division- distorted areas

Chlorosis

- Symptoms associated with disruption of chloroplast structure, function, and/or development
- Yellowed areas in expanded leaves that developed before infection
- Mosaic pattern in leaves that developed after infection


Chlorosis

Peanut mottle virus in bean, chlorotic lesions on leaf (Courtesy C.W. Kuhn)

Squash leaf curl virus in summer squash, vein banding symptom (Courtesy R. Providenti)

Rubus yellow net virus

Hyperplasia

-Excessive cell division- distorted areas

Necrosis

- Hypersensitive response (HR)
- Different response from bacterial and fungi induced HR
 - Plant recognizes and respond to intracellular gene product
 - Mutations frequently change the phenotype from virulence to avirulence

Hypersensitive Response

- Synthesis of new proteins- pathogenesis related
- Increased production of cell wall phenolics
- Release of active oxygen species
- Production of phytoalexins
- Accumulation of salicylic acid

Plant Resistance

Resistance different levels and various mechanisms

- Immunity- complete resistance
 - Prevents viral replication
 - Non-host resistance
 - Extreme resistance
- Subliminal infection
 - Replication, but virus prevented from moving outside the cell

Plant Resistance

- Hypersensitive response
 - Kills cells within infected area
 - Prevents spreading of infection
 - Systemic acquired resistance (SAR)
 - Pathogen non-specific resistance

Plant-Virus Interactions

Plants possess active and passive means to prevent infection

Passive

Failure to host factors necessary for virus reproduction

Active

- Detection and destruction of virus-infected cells
 - Resistance genes

Symptoms

- Symptoms range from symptomless conditions to severe disease and plant death
 - Chlorosis and necrosis- direct damage due to virus replication
 - Hypoplasia- localized retarded growth-leads to mosaicism
 - Hyperplasia- excessive cell division- distorted areas

Chlorosis

- Symptoms associated with disruption of chloroplast structure, function, and/or development
- The mosaic pattern that develops in a leaf appears not to depend upon its position, but rather on the stage of leaf development at the time of viral infection
 - Yellowed areas in expanded leaves that developed before infection
 - Mosaic pattern in leaves that developed after infection

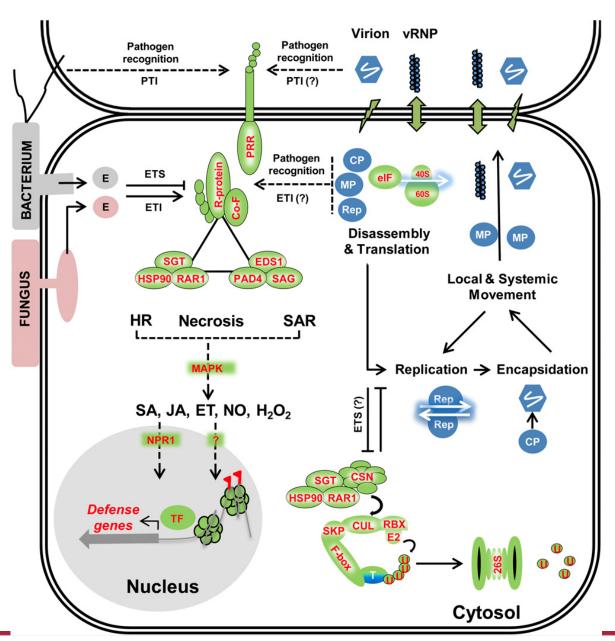
Necrosis

- 1.- Hypersensitive response (HR)- Usually controlled by single dominant gene
- Different response from bacterial and fungi induced HR
 - Plant recognizes and respond to intracellular gene product
 - Mutations frequently change the phenotype from virulence to avirulence

Hypersensitive Response

- Synthesis of new proteins- pathogenesis related
- Increased production of cell wall phenolics
- Release of active oxygen species
- Production of phytoalexins
- Accumulation of salicylic acid

Necrosis


- 2.- Slower-forming local necrosis that is not related to a single host gene
- 3.- Various degrees of systemic necrosis
- Not clear if responses are distinctly different or variations of the same process
- Race between how fast the virus replicates and moves and how fast the HR occurs

Systemic Acquired Resistance (SAR)

- Systemic acquired resistance (SAR) is a plant immune response to pathogen attack.
- SAR is analogous to the innate immune system found in animals, and there is evidence that SAR in plants and innate immunity in animals may be evolutionarily conserved.

SAR

 Initiated through a local interaction among pattern-recognition receptors to recognize conserved microbial signatures and results in accumulation of phytohormones such as salicylic acid and jasmonic acid, ethylene, H₂O₂ at the distant tissues

Summary

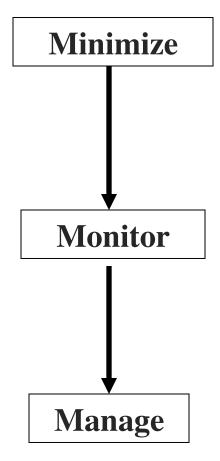
- Plant viruses are diverse and unusual groups of plant pathogens that infect and cause disease in many crop plants.
 - Pathogens depend on the normal cellular machinery of their plant host for reproduction, it is difficult to eliminate them without damaging the host plant.
 - Management strategies for diseases caused by plant viruses and viroids are directed at preventing infection of the plant.

Questions?

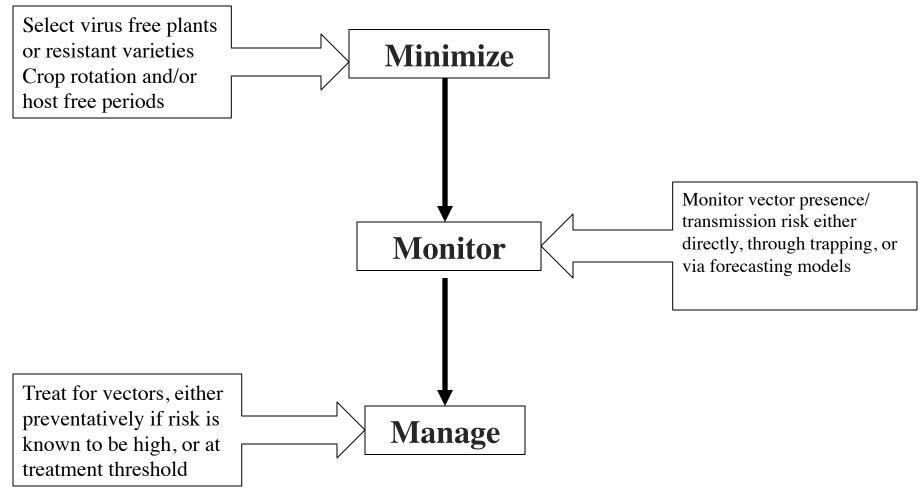
Thank-You

Arthropod vector management strategies in small fruits

Donn Johnson, University of Arkansas Hannah Burrack, North Carolina State University


Virus transmission review

Virus transmission involves three time periods - virus acquisition, latent, and inoculation


Types of transmission:

- **1. Non-persistent (mechanical)** very short probing tine to acquire virus, virus sticks to mouthpart and next probing it transmits virus to healthy plant (no latency period) <u>hard to control</u>
- **2. Semi-persistent** short acquisition and inoculation period, no latent period and does not retain the virus after it molts
- **3. Persistent** up to 1 week acquisition period, 1 week latent period (propagate virus in vector), then can inoculate virus to plant and retains virus after molt

Integrated Pest Management

Integrated Pest Management

Know Virus Vector & Biology

Aphid vectored viruses in southeastern strawberries, 2013
Stunted strawberry plants observed in spring 2013 in FL,
GA, SC, NC, and VA

Aphid vectored viruses in southeastern strawberries, 2013

Determined that plants were infected with:

SMYEV: Persistent, circulatively transmitted virus spread

by Chaetosiphon fraegolii, C. thomasi, and C. jacobi

SMoV: Semi-persistently transmitted by *C. fraegaefolii*, several other *Chsaetosiphon* species, and *Aphis gossypii*

Recommended management strategies

For nurseries:

Implement a host free period

Recommended management strategies

For nurseries:

Aggressively scout for vectors and consider using systemic insecticides preventatively in high risk years (mild winters, nearby non crop hosts)

Recommended management strategies

For growers:

Acquire clean plants

Scout incoming transplants for aphids

Sample for aphids during growing season (10 newly expanded leaflets per acre)

Insecticide treatment is only necessary if viruses have been identified or aphids are at treatment threshold (10+ per leaflet)

When scouting, distinguish between live aphids, dead aphids, and parasitized aphids

Virus Control in Strawberry

- 1. Start with clean plants
- 2. Know the high risk viruses for your area
- Know the risks associated with planting site
- 4. Isolation from other fields if practical
- 5. Implement vector control as needed
- Be sure the problem is viral before taking any action

(Excerpts from 2011 webinar by Bob Martin, USDA)

NC STATE UNIVERSITY

Virus survey in North America

Symptomless Declining Pacific Mid South east		40 04					
Virus Plants - CA Plants - CA Northwest west east east BPYV 6/104 15/24 0/90 2/80 3/27 13/23 FCILV 0/104 0/24 0/90 5/80 0/27 4/23 SCV 7/104 5/24 33/90 3/80 2/27 0/23 SMoV 8/104 6/24 62/90 6/80 2/27 6/23 SMYEV 12/104 8/24 48/90 5/80 2/27 4/23 SNSV 5/104 0/24 3/90 1/80 1/27 1/23 SPaV 11/104 18/24 1/90 19/80 3/27 17/23							
BPYV 6/104 15/24 0/90 2/80 3/27 13/23 FCILV 0/104 0/24 0/90 5/80 0/27 4/23 SCV 7/104 5/24 33/90 3/80 2/27 0/23 SMoV 8/104 6/24 62/90 6/80 2/27 6/23 SMYEV 12/104 8/24 48/90 5/80 2/27 4/23 SNSV 5/104 0/24 3/90 1/80 1/27 1/23 SPaV 11/104 18/24 1/90 19/80 3/27 17/23		Symptomless	Declining	Pacific	Mid	South	North
FCILV 0/104 0/24 0/90 5/80 0/27 4/23 SCV 7/104 5/24 33/90 3/80 2/27 0/23 SMoV 8/104 6/24 62/90 6/80 2/27 6/23 SMYEV 12/104 8/24 48/90 5/80 2/27 4/23 SNSV 5/104 0/24 3/90 1/80 1/27 1/23 SPaV 11/104 18/24 1/90 19/80 3/27 17/23	Virus	Plants - CA	Plants - CA	Northwest	west	east	east
SCV 7/104 5/24 33/90 3/80 2/27 0/23 SMoV 8/104 6/24 62/90 6/80 2/27 6/23 SMYEV 12/104 8/24 48/90 5/80 2/27 4/23 SNSV 5/104 0/24 3/90 1/80 1/27 1/23 SPaV 11/104 18/24 1/90 19/80 3/27 17/23	BPYV	6/104	15/24	0/90	2/80	3/27	13/23
SMoV 8/104 6/24 62/90 6/80 2/27 6/23 SMYEV 12/104 8/24 48/90 5/80 2/27 4/23 SNSV 5/104 0/24 3/90 1/80 1/27 1/23 SPaV 11/104 18/24 1/90 19/80 3/27 17/23	FClLV	0/104	0/24	0/90	5/80	0/27	4/23
SMYEV 12/104 8/24 48/90 5/80 2/27 4/23 SNSV 5/104 0/24 3/90 1/80 1/27 1/23 SPaV 11/104 18/24 1/90 19/80 3/27 17/23	SCV	7/104	5/24	33/90	3/80	2/27	0/23
SNSV 5/104 0/24 3/90 1/80 1/27 1/23 SPaV 11/104 18/24 1/90 19/80 3/27 17/23	SMoV	8/104	6/24	62/90	6/80	2/27	6/23
SPaV 11/104 18/24 1/90 19/80 3/27 17/23	SMYEV	12/104	8/24	48/90	5/80	2/27	4/23
	SNSV	5/104	0/24	3/90	1/80	1/27	1/23
SVBV 11/104 4/24 43/90 3/80 2/27 1/23	SPaV	11/104	18/24	1/90	19/80	3/27	17/23
	SVBV	11/104	4/24	43/90	3/80	2/27	1/23

Whitefly vectored viruses in strawberries (2011 webinar by Bob Martin, USDA)

- Whiteflies vector
 - Strawberry pallidosis associated virus (SPaV)
 - Hosts: Malvaceae (mallow), Cucurbitaceae,
 Chenopodiaceae (relatives of Lamb's
 Quarters)
 - Beet pseudo-yellow virus (BPYV)
 - Hosts: Urtica (nettle) and Malva (mallow)
- Symptomatic plants often have a combination of whitefly and aphid vectored viruses in the western US

Pathogen case studies Blueberry stunt

- Blueberry stunt

 Plant stunted with downward curled, reddish leaves, sour fruit
- Sharpnosed leafhopper vectors phytoplasma
- Or, spread from cuttings taken from stunt-infected nursery plants

- Adult is 3/16", pointed head, creamy spots on wings
- Check yellow sticky traps May, July & Oct.

Blueberry Stunt management

- Scouting, eradication or roguing of any plant showing stunt symptoms but spray infected bush with an insecticide before removal to kill any leafhoppers that may be present.
- **Vector control** treatment timed to peaks in the insect vector population (May, July and October).
- Stunt-free propagation of cuttings

Pathogen case studies Pierce's Disease (PD) or Scorch

- Marginal leaf burn, then leaf blades fall off and petioles remain
- Leafhoppers vector PD bacteria by single probing of grapes or blueberries
- Monitor using yellow sticky cards at perimeter

PD Cultural Control

- Isolate vineyard from wooded areas
- Keep ditch banks and other weedy strips near vineyard mowed
- Mow vineyard regularly and minimize broadleaf weeds in the vineyard
- If a couple shoots have symptoms of leaf blades dying and/or petioles only remaining on shoot, prune off those infected shoots at the cordon.
- If most shoots on vine are showing above symptoms, dig up the vine and destroy.

PD Management

(by Dr. Turner Sutton at NCSU)

- <u>Bud break to 15 May</u>: apply soil drench of Clutch, Venom or Admire Pro for systemic control of vectors and apply Surround (kaolin clay) to white-wash perimeter vines (camouflage vines) to reduce dispersal into vineyard and suppress leafhopper feeding
- 15 May to 15 June: apply Danitol and reapply 15 days later
- <u>15 June</u>: apply Assail which will give you 21 to 30 days protection

Blackberry Virus Project

Systematic virus infections can significantly reduce the productive lifespan of caneberry plantings

Multiple viral infections are necessary for disease symptoms

Different viruses are likely responsible for infections in raspberry vs. blackberry and in different regions

Objectives

Identify what viruses are present in caneberries and which combination of viruses result in disease

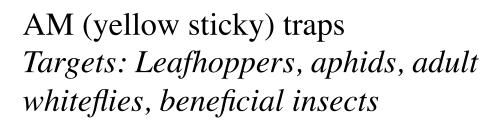
Determine **when plants become infected** with important viruses

Identify what vectors are responsible for virus transmission

Development **management strategies** for important virus vectors

Virus transmission

25-30 of each trap type placed near the sentinel trap
Checked and changed biweekly

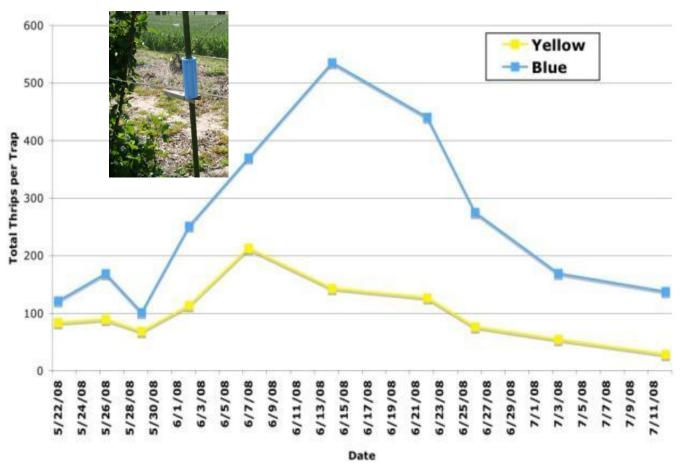


Thrips traps *Targets: Adult thrips*

Blue sticky traps Targets: Leafhoppers, aphids, adult whiteflies, some adult thrips

Pan traps
Targets: Aphids, adult thrips,
beneficial insects

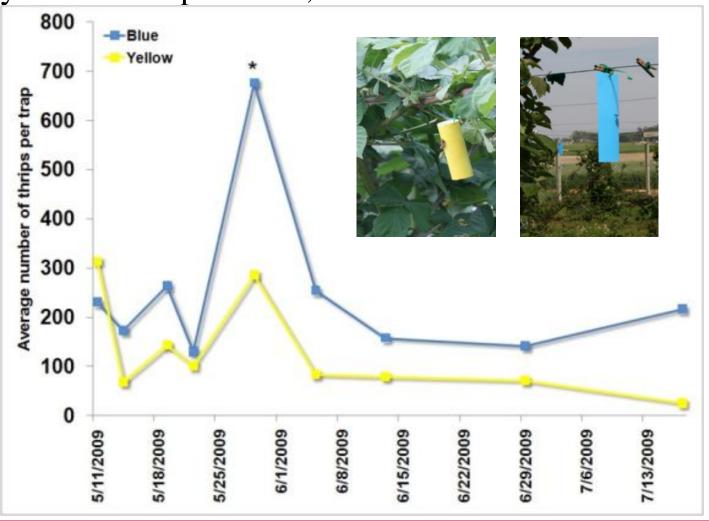
Insect monitoring



Direct observations
Fruit & foliage samples

Targets: Larval thrips, immature whiteflies, eriophyid mites, tetranychid mites, beneficial insects

NC STATE UNIVERSITY


 Monitoring efficacy blue sticky cylinder and yellow sticky card – Thrips in NC, 2008 & 2009

NC STATE UNIVERSITY

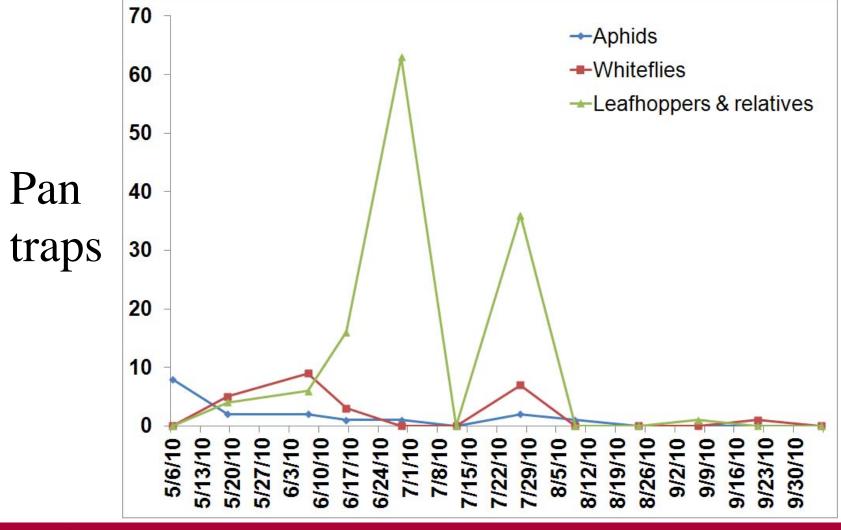
 Monitoring efficacy yellow sticky cylinder and blue sticky card – Thrips in NC, 2008 & 2009

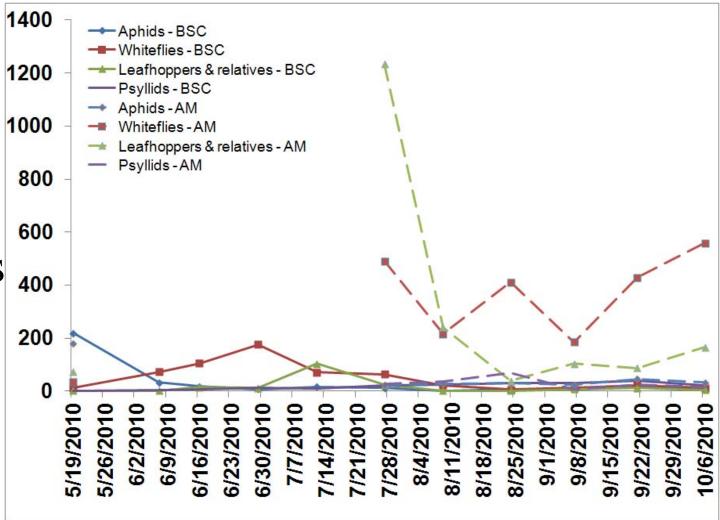
 Monitoring efficacy – Potential vector groups by trap type in AR, 2010

	% of total seasonal catch					
Family	AM Trap	Sweep net	Blue sticky card	Yellow thrips traps	Blossoms	Yellow pan traps
Cicadellidae	25.8	85.3	85.1	1.6	0	7.7
Aphididae	10.6	0.7	0.0	3.6	7.1	20.5
Aleyrodidae	0.1	0	0.8	1.3	0	0
Delphacidae	0.14	13.5				
Cercopidae	0.09	0.1				
Membracidae	0.4	0.3				
Thripidae	62.8	0	8.3	94.8	92.9	71.8

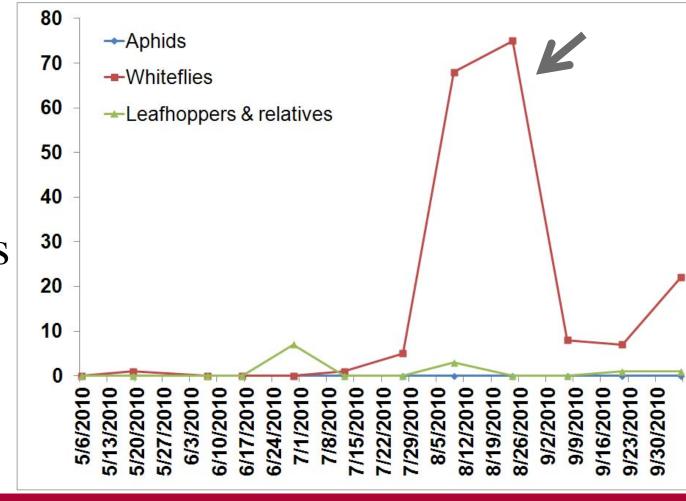
 Monitoring efficacy – Potential vector groups by trap type in NC, 2010

	% of total seasonal catch				
Family	AM Traps	Foliage observation	Blue sticky card	Blossoms	Yellow pan traps
Cicadellidae, Delphacidae, Cercopidae, and Membracidae	8.70	3.75	1.30	0.00	3.98
Aphididae	1.51	0.00	0.77	0.12	0.54
Aleyrodidae	9.80	58.40	0.00	0.00	0.80
Thripidae	79.20	37.20	97.00	80.60	56.80
Tetranychidae		0.63		15.90	
Psyllidae	0.74		0.40		
Eriophyiidae				3.31	


Thrips traps attract numerous other potential vector groups



• Considered by trapping method – thrips considered separately (using 2008 & 2009 data)


	% of total seasonal catch					
Family	AM Traps	Foliage observation	Blue sticky card	Blossoms	Yellow pan traps	
Cicadellidae, Delphacidae, Cercopidae, and Membracidae	8.70	3.75	1.30	0.00	3.98	
Aphididae	1.51	0.00	0.77	0.12	0.54	
Aleyrodidae	9.80	58.40	0.00	0.00	0.80	
Thripidae	79.20	37.20	97.00	80.60	56.80	
Tetranychidae		0.63		15.90		
Psyllidae	0.74		0.40			
Eriophyiidae				3.31		

Blue sticky & yellow sticky cards

Foliage samples

Bud, blossom, fruit samples

Date	Thrips	Whiteflies	Aphids	Eriophyid mites
5/6/2010	754	0	2	0
5/19/2010	118	0	0	0
6/7/2010	148	0	0	0
6/16/2010	93	0	0	1
6/29/2010	121	0	0	29
7/12/2010	107	0	0	25