Title: Changes in flavor-related compounds, sugars and acids, after application of Ethephon and 1-aminocycloproponae carboxylic acid.

Name, Mailing and Email Address of Principal Investigator(s):

Principal Investigator	Co- Principal Investigator	Co- Principal Investigator
Savithri Nambeesan	Anish Malladi	Renée Holland
Asst. Research Scientist/ Faculty	Associate Professor	Area Blueberry Agent
University of Georgia/ CAES	University of Georgia	Extension-Bacon County
Department of Horticulture	Department of Horticulture	University of Georgia
1111 Miller Plant Sciences	1111 Miller Plant Sciences	203 S. Dixon St., Suite 3
Athens, GA 30602	Athens, GA 30602	Alma, GA 31510
Email: sunamb@uga.edu	Email: malladi@uga.edu	Email: reneemh@uga.edu
Phone: 706-542-0777	Phone: 706-542-0783	Phone: 912-632-5601

Blueberries are among the leading crop with two main types of cultivated in Georgia, the southern highbush blueberry and rabbiteye blueberry. Blueberry fruits grow in a cluster and fruit maturity times vary among fruit within a cluster resulting in a non-uniform ripening, the duration of which can extend over several weeks, thus requring multiple harvests for each cultivar. In January 2019, we conducted surveys at the Annual Blueberry Meeting in Alma, GA and the Southeast Fruit and Vegetable Conference, in Savannah, GA. The survey was taken by 43 growers. When asked about the value placed on reducing harvesting frequency, ~ 86% of blueberry growers placed high to moderate value on reducing harvest frequency. Thus, synchronized ripening is a desired trait that will save production related costs in commercial blueberry production. Previously we have shown that Ethephon and ACC application at 250 ppm increased the rate of ripening in two rabbiteve cultivars, 'Premier' and 'Powderblue'. Here, we propose to test the effects of these two-ethylene related plant growth regulators on fruit flavorrelated compounds, mainly sugars and acids. We determined the major sugars and acids present during blueberry fruit development. Fructose, glucose, and sucrose were the three major sugars that accumulated during blueberry fruit development. Malic acid, citric acid, quinic acid, and shikimic acid were the major acids in blueberries. Overall, application of ethylene releasing PGRs did not influence sugar and acid composition in the fruit. These results suggest that the PGRs may be effective as ripening aids to concentrate fruit ripening with minimal effects on fruit flavor related sugar and acid metabolites. These data also suggest that the PGRs can enhance ripening possibly by influencing color change. Hence, future studies will focus on the effects of ethephon and ACC applications on anthocyanin production.