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Objective: 

The main objective of the proposal is to predict fruit firmness (compression and puncture) during 

postharvest storage using fruit metabolic traits (sugars and acids) in southern highbush cultivars. 

 

Justification and Description: 

           Blueberries are a perishable commodity and deteriorate quickly after harvest. Therefore, 

the shelf-life of blueberry is relatively short, ranging from 1-6 weeks, depending on the cultivar, 

harvesting, handling, and storage method. The main causes of decreased fruit quality during 

postharvest storage are water loss, increase in fruit softening, and decay caused by postharvest 

pathogens (Li et al., 2011; Mehra et al., 2013; Paniagua et al., 2013). Although breeding efforts to 

improve fruit quality are concentrated towards increasing fruit firmness, currently there is no 

information on the role of total soluble solids (TSS), titratable acidity (TA) and other quantities of 

metabolites (individual sugars and acids) on predicting fruit quality. If we are able to identify the 

metabolic traits that are key determinants of fruit firmness, this information can be used in breeding 

efforts to select for cultivars with improved fruit quality attributes. This is especially important 

because wholesale buyers and consumers pay attention to the appearance and firmness of fruits, 

which are major factors associated with fruit quality (NCSU Extension [Boyette et al.]; Maclean 

and Nesmith, 2011). Approaches to identify key metabolites influencing fruit quality and improved 

agronomic traits have previously been applied to tomato (Gómez-Romero et al., 2010), peach 

(Lombardo et al., 2011), grapes (Degu et al., 2014), and strawberry (Zhang et al., 2011). 

In Georgia, southern highbush (species complex between Vaccinium corymbosum L. 

and V. darrowii Camp.) and rabbiteye (V. virgatum Aiton) are commonly grown blueberries. 

Southern highbush blueberry fruit ripen early and growers get a premium price for these fruit. 

However, rabbiteye blueberries are native to the southeastern United States and therefore make up 

a significant portion of the blueberry industry in this region. Therefore, in our initial analysis we 

attempted to determine if fruit chemical traits such as TSS and TA predict fruit firmness in both 

these types of blueberries (see preliminary data presented below). Since TSS and TA are composite 

measurements of multiple sugars and acids, separating their individual components will provide 
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better resolution and more information of predictors of fruit quality. For example, a previous study 

in blueberries indicated a positive correlation between fruit firmness and quinic acid, and a 

negative correlation between fruit firmness and shikimic acid (Montecchiarini et al. 2018). 

However, this study was performed using only three southern highbush blueberry cultivars at 

immature green and ripe stages. In this study, we plan to evaluate additional stages during 

postharvest storage in multiple southern highbush blueberry cultivars. Since this analysis is time 

consuming and expensive, here we propose to perform metabolite analysis to assay for individual 

sugars and acids only for southern highbush blueberry.   

 

Preliminary Results: Previously we collected information on fruit quality attributes in southern 

highbush and rabbiteye blueberry cultivars from 2015-2018. Briefly, ripe fruit were collected from 

the Alapaha Research farm (UGA) and other commercial farms. These fruits were sorted to remove 

defective fruit and then stored in clamshells in a walk-in cooler at 4 C under high relative 

humidity. Fruit quality measurements were performed at regular intervals (up to 6-7 weeks). Fruit 

quality measurements included visual quality inspection of bruised fruit. Using this parameter an 

index of percent healthy fruit was developed, which is defect free fruit over total number of fruits 

assayed. Other measurements included, compression (fruit firmness), puncture (skin toughness), 

TSS, TA, pH and fruit weight. This information was used to develop the regression model for 

predicting fruit firmness (compression and puncture) using the fruit's physical traits. Below we 

describe how fruit compression and fruit puncture were predicted. We utilized stepwise linear 

regression model for the prediction of fruit firmness using the physical traits parameter as 

described below: 

 

 yi=β0 + β1xi1 + β2Xi2 + β3Xi3 +.........+ βpXip + ε,  

 

where yi = dependent variable, Xi = independent variable, β0 = intercept, i = number of 

observations, βp = slope coefficients, and ε = model error. 

Our model suggested that fruit compression is associated with the puncture values, healthy 

berries (%), TA, fruit weight, TSS, and pH (Table 1). Similarly, fruit puncture is significantly 

associated with compression, TA, Type (SHB), and percent healthy berries (Table 1). From these 

predictions it was not surprising that compression and puncture values were associated with each 

other. Compression measures fruit firmness (skin and flesh firmness) and puncture is specific to 

skin toughness. Thus, a positive association between them was expected (Table 1). TSS is 

negatively associated with fruit compression. If fruit contain higher sugars (and soluble solids), it 

may lead to increased water uptake and cell turgor and influence cell wall properties such that fruit 

firmness is lowered. However, this is speculative and warrants further investigation. Surprisingly, 

compression was negatively associated with TA, whereas puncture is positively associated with it.  

As mentioned earlier, TA is a composite measurement of several acids such as malic, citric 

and quinic acid. Individual acids may allow for better separation of effects on fruit firmness and 

skin toughness. Therefore, in this proposed work we performed follow-up studies to explore 

association between fruit firmness and skin toughness with individual sugars and acids using 

several machine learning methods (regression) as described below.   
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Table 1. Model predicting the fruit firmness (compression Left, and puncture: Right) by stepwise 

linear regression model. Significantly associated variables are presented below. 

Compression 

Fruit quality traits Estimate P-value 

(Intercept) 0.2029 <0.0001 

Puncture 0.7554 <0.0001 

Healthy berry (%) 0.0005 <0.0001 

TA -0.0307 0.0115 

Fruit weight 0.0129 <0.0001 

TSS -0.0032 <0.0001 

pH -0.0275 <0.0001 

 

Puncture 

Fruit quality traits Estimate P-value 

(Intercept) 0.0478 <0.0001 

Compression 0.3939 <0.0001 

TA 0.0653 <0.0001 

Type (SHB) 0.0165 <0.0001 

Healthy berry (%) -0.0002 <0.0001 

 

 

Significance 

 Southern highbush and rabbiteye are the major types of blueberry type grown in Georgia 

and the southeastern US. Variations in fruit physical and chemical traits (metabolites) are found 

among cultivars. It is hypothesized that fruit firmness is associated with these physical and 

chemical traits. Validation and usage of various machine learning methods (regression model) can 

help predict fruit firmness. This can help identify major physical and chemical traits that are 

associated with the fruit's firmness. In the future, this information can be used to incorporate into 

the southeastern blueberry breeding program and help select new cultivars. Overall, this 

knowledge can benefit the blueberry grower, consumers, and the industry by increasing blueberry 

fruit firmness and shelf life. 

 

Description of Procedures: 

For the proposed work as described previously, we measured individual sugars and acids in 

multiple southern highbush type blueberries. 

 

Table 2. Fruit material for which data have been collected.  

Cultivar 2015 2017 

Suziblue x x 

Rebel x x 

Farthing   x 

Emerald   x 

Miss Lilly   x 

Miss Alice Mae   x 

Miss Jackie   x 
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 Fruit physical traits (compression, puncture, TSS, TA, pH, and weight at various 

postharvest stages were measured in two years as presented above (Table 2). Fruits samples were 

already collected and stored at -80 ℃. We have already performed metabolite analyses using gas 

chromatography on two cultivars (Suziblue and Rebel) in 2015 and 2017. Having two years of 

data for two cultivars will help to determine variability across years. For the proposed work, 

metabolite analysis was performed on five more cultivars: Farthing, Emerald, Miss Lilly, Miss 

Alice Mae, and Miss Jackie. Including five more cultivars will give us the statistical power to make 

useful predictions. Due to handling of multiple samples from various cultivars, fruit measurement 

time-points were slightly different among cultivars. This should not affect chemical analysis since 

differences of 1-3 days is unlikely to dramatically affect metabolite composition and prediction 

models. Metabolite analyses were performed on samples collected during postharvest (PH) storage 

at < 1 week, approximately 2 weeks, and at three weeks of storage. Four replicates were used at 

each time point for each cultivar.  

 

Metabolite profiling 

 Identification of compounds was performed using gas chromatography-mass spectrometry 

(GCMS) equipped with a 5973 quadrupole mass spectrometer detector (Agilent Technologies 

6890N Network GC system) and an HP-5 fused capillary column (J&W Scientific, Fulsom, CA, 

USA) was employed. The quantification of compounds was performed by using the GC-flame 

ionization detector GC-FID (GC-2014; Shimadzu, Japan). The method set up is similar for GCMS 

and GC-FID as described below. The extraction protocol was performed according to Chapman 

and Horvat (Chapman Jr & Horvat, 1989) with some modifications. Around 100-150 mg of frozen 

grounded samples was extracted with 100% methanol, followed by centrifugation at 22,000 g for 

30 minutes. After that, 100 µL of supernatant was transferred into a GC-vial. Supernatants were 

evaporated under nitrogen gas at 45 °C. 50 µL of methoxyamine-HCl (20 mg metoxyamine in 1 

ml pyridine) was added to each sample and heated at 50 °C for 30 minutes to make the oxime 

derivatives. Finally, derivatization of compounds was performed by adding 100 µL of N-Methyl-

N-(trimethylsilyl) trifluoroacetamide (MSTFA) + 1% TMCS (trimethylchlorosilane) and heating 

at 50 °C for 30 minutes. In the GC-FID, helium was used as a carrier gas. The initial temperature 

of the oven was set up at 120 °C for 1 minute, then 4 °C per minute ramped to 180 ℃, 0.5 min at 

180 °C, 0.5 ℃ per minute ramped to 185 ℃, 0.5 min at 185 ℃, 1 ℃ per minute ramped to 210 

℃, 0.5 minutes at 210 ℃, 10 °C per minute ramped to 260 °C, and finally held for 12 minutes at 

260 °C. A standard solution was prepared for each of the identified metabolites. The standards 

were extracted and derivatized as described for the fruit samples. Standard curves were generated 

individually for each metabolite and used for the quantification. 

 

Statistical analysis:   

In order to predict fruit firmness using the metabolite data, we looked at the variance inflation 

factors (VIP) value to see if we have multicollinearity problems in our data. After that, we analyzed 

our data using LASSO (Least absolute shrinkage and selection operator). 

 

LASSO regression: The LASSO regression model was used to predict compression or puncture as 

a dependent variable and fruit metabolite as an independent variable. Fruit metabolite 

measurements during the PH storage in 2015 and 2017 and their respective compression and 

puncture at the same time points were taken for the analysis. LASSO finds the optimal regression 

coefficients by minimizing the function given as below (James et al., 2013).  
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 𝐽 = RSS + λ ∑ |𝛽𝑗|
𝑝

𝑗=1
,  and   𝑅𝑆𝑆 = ∑ (𝑌𝑖 − β0  − ∑ β𝑗

𝑝
𝑗=1 𝑥𝑖𝑗)

𝑛

𝑖=1
 

Where, J is the objective function to be minimized, RSS is the residual sum of squared, 

λ ∑ |𝛽𝑗|
𝑝

𝑗=1
 is the regularization component and λ is the penalty term, p is the number of 

predictor variable, Yi is the target variable for the ith data, β0 is the intercept, βj is the coefficient 

for the jth variable,  and xij is the value for the jth predicted variable for the ith data. 

 

We used the R package 'glmnet' to fit the linear regression with LASSO. The train and test data 

sets were divided into 80% and 20%, respectively, and the parameter was optimized using 10-fold 

cross-validation. The optimal λ values were selected based on the minimum mean squared error 

(MSE) via cross-validation. Finally, the coefficients of the most important variables, variable 

importance, and predicted vs. observed values were identified and presented. 

 

Result and discussion: 

In the metabolite data, we encountered issues of multicollinearity, particularly concerning 

fructose, glucose, and sucrose, which had variance inflation factors of 247, 277, and 25, 

respectively (Table 3). In such a scenario, the SLR model does not perform well due to the 

collinearity issues, that can lead to overfitting and a loss of robustness in the models (Saranwong 

et al., 2001; Næs et al., 2002; Nicolai et al., 2007). Hence, we employed the LASSO regression 

model to predict fruit firmness using the metabolite data. The LASSO regression model reduces 

the coefficients of less important variables in the dataset to zero, retaining only the most 

important variables for model prediction (Ljubobratović et al., 2022). This approach helps 

address the issue of multicollinearity and enhances the model's performance and interpretability.   

In this work, we identified several metabolites that were either positively or negatively 

associated with fruit compression and puncture predictions, as presented in Table 4. Notably, 

serine, quinate, citrate, and myo-inositol exhibited positive associations with fruit compression. 

Conversely, sucrose, fructose, xylose, shikimate, succinate, glutamate, threonine, aspartate, 

anthocyanin, and malate were negatively associated with fruit compression. Similarly, for 

puncture prediction, sugars like fructose and xylose showed negative associations, while acids 

like quinate and citrate were positively associated (Table 4). These findings suggest that cultivars 

with higher citrate and quinate concentration along with a reduction in malate levels, are 

associated with higher fruit firmness. In blueberries, a higher concentration of citrate and 

phenylalanine in ripe fruit is positively correlated with fruit firmness, while xylose, leucine, and 

shikimate show a negative correlation (Montecchiarini et al., 2018).  

Additionally, decrease in sugar concentration may enhance fruit firmness. An increase in 

sugar import in the fruit from source tissue increases water influx during fruit ripening. If an 

increase in water uptake can increase cell turgor and associated decline in fruit firmness due to 

pressure exerted on the cell wall will warrant further investigation.  However, it is essential to 

consider that high sugars and low acids in ripe fruit play a significant role in contributing to the 

flavor of the fruits. 

The variable importance plot provides insights into the contribution of each variable to 

the model's prediction. In the compression prediction, serine made the most significant 

contribution, followed by quinate, shikimate, sucrose, and succinate (Figure 1). On the other 

hand, aspartate, citrate, and malate made relatively lesser contributions in this context. Similarly, 

for the puncture prediction, fructose was the most influential variable, followed by glutamine, 

quinate, and myo-inositol. In contrast, citrate, glycerate, and glutamate were among the variables 
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that made the least contribution (Figure 1). Lastly, the prediction versus observed plot 

demonstrated the model's accuracy, yielding an R2 value of 0.70 for the compression prediction 

and 0.60 for the puncture prediction (Figure 1A-B), showing the model's effectiveness in 

explaining the observed data.   

 

 

 

Table 3: Variance inflation factors (VIF) of depended variables  

Dependent variables VIF 

Stages 6.5 

Succinate 4.3 

Glycerate 3.7 

Serine 8.1 

Threonine 7.6 

Malate 7.2 

Aspartate 8.8 

Glutamate 2.6 

Xylose 2.1 

Glutamine 7.3 

Shikimate 2.6 

Citrate 4.4 

Quinate 2.5 

Fructose 246.9 

Glucose 277 

Myo-inisitol 6 

Sucrose 25.2 

Anthocyanin 3.6 
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Table 4: Prediction of Fruit Firmness (Compression & Puncture) using LASSO Regression 

Model with metabolites during postharvest storage. We conducted a study to predict fruit 

firmness, both in terms of compression and puncture, utilizing a LASSO regression model. The 

model incorporated various primary and secondary metabolites as predictor variables.  

Fruit compression Prediction   Fruit puncture Prediction 

Fruit chemical traits Estimate  Fruit chemical traits Estimate 

(Intercept) 0.2501  (Intercept) 0.1569 

Serine 0.0244  Fructose -0.0091 

Quinate 0.0209  Glutamine 0.006 

Shikimate -0.0176  Quinate 0.0054 

Sucrose -0.0143  Myo-inisitol -0.0052 

Succinate -0.0115  Shikimate -0.0035 

Xylose -0.0076  Xylose -0.0031 

Glutamate -0.0072  Malate -0.0028 

Threonine -0.0066  Glutamate -0.0009 

Fructose -0.005  Glycerate 0.0009 

Anthocyanin -0.0046  Citrate 0.0006 

Myo-inisitol 0.0034  R2 0.60 

Malate -0.0008  RMSE 0.0719 

Citrate 0.0007    
Aspartate -0.0001    
R2 0.70    

RMSE 0.0212    
R2= coefficient of determination and RMSE=root mean square error determines from the 

respective test samples of compression and puncture. 
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Figure 1: Variable importance (A, B) and Predicted Vs Observed (C, D) plot during the 

prediction of compression (A, C) and puncture (B, D).  
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